

Configuration Readme

SENDMAIL CONFIGURATION FILES

This document describes the sendmail configuration files. It
explains how to create a sendmail.cf file for use with sendmail.
It also describes how to set options for sendmail which are explained
in the Sendmail Installation and Operation guide (doc/op/op.me).

To get started, you may want to look at tcpproto.mc (for TCP-only
sites) and clientproto.mc (for clusters of clients using a single
mail host), or the generic-*.mc files as operating system-specific
examples.

Table of Content:

INTRODUCTION AND EXAMPLE
A BRIEF INTRODUCTION TO M4
FILE LOCATIONS
OSTYPE
DOMAINS
MAILERS
FEATURES
HACKS
SITE CONFIGURATION
USING UUCP MAILERS
TWEAKING RULESETS
MASQUERADING AND RELAYING
USING LDAP FOR ALIASES, MAPS, AND CLASSES
LDAP ROUTING
ANTI-SPAM CONFIGURATION CONTROL
CONNECTION CONTROL
STARTTLS
SMTP AUTHENTICATION
ADDING NEW MAILERS OR RULESETS
ADDING NEW MAIL FILTERS
QUEUE GROUP DEFINITIONS
NON-SMTP BASED CONFIGURATIONS
WHO AM I?
ACCEPTING MAIL FOR MULTIPLE NAMES
USING MAILERTABLES
USING USERDB TO MAP FULL NAMES
MISCELLANEOUS SPECIAL FEATURES
SECURITY NOTES
TWEAKING CONFIGURATION OPTIONS
MESSAGE SUBMISSION PROGRAM
FORMAT OF FILES AND MAPS
DIRECTORY LAYOUT
ADMINISTRATIVE DETAILS

+--------------------------+
| INTRODUCTION AND EXAMPLE |
+--------------------------+

Configuration files are contained in the subdirectory "cf",
with a

suffix ".mc". They must be run through "m4" to
produce a ".cf" file.
You must pre-load "cf.m4":

 m4 ${CFDIR}/m4/cf.m4 config.mc > config.cf

Alternatively, you can simply:

 cd ${CFDIR}/cf
 ./Build config.cf

where ${CFDIR} is the root of the cf directory and config.mc is the
name of your configuration file. If you are running a version of M4
that understands the __file__ builtin (versions of GNU m4 >= 0.75 do
this, but the versions distributed with 4.4BSD and derivatives do not)
or the -I flag (ditto), then ${CFDIR} can be in an arbitrary directory.
For "traditional" versions, ${CFDIR} ***MUST*** be
"..", or you MUST
use -D_CF_DIR_=/path/to/cf/dir/ -- note the trailing slash! For
example:

 m4 -D_CF_DIR_=${CFDIR}/ ${CFDIR}/m4/cf.m4 config.mc >
config.cf

Let's examine a typical .mc file:

 divert(-1)
 #
 # Copyright (c) 1998-2005 Sendmail, Inc. and its suppliers.
 # All rights reserved.
 # Copyright (c) 1983 Eric P. Allman. All rights reserved.
 # Copyright (c) 1988, 1993
 # The Regents of the University of California. All rights
reserved.
 #
 # By using this file, you agree to the terms and conditions set
 # forth in the LICENSE file which can be found at the top level
of
 # the sendmail distribution.
 #

 #
 # This is a Berkeley-specific configuration file for HP-UX 9.x.
 # It applies only to the Computer Science Division at Berkeley,
 # and should not be used elsewhere. It is provided on the
sendmail
 # distribution as a sample only. To create your own
configuration
 # file, create an appropriate domain file in ../domain, change
the
 # `DOMAIN' macro below to reference that file, and copy the
result
 # to a name of your own choosing.
 #
 divert(0)

The divert(-1) will delete the crud in the resulting output file.
The copyright notice can be replaced by whatever your lawyers require;

our lawyers require the one that is included in these files. A
copyleft
is a copyright by another name. The divert(0) restores regular output.

 VERSIONID(`<SCCS or RCS version id>')

VERSIONID is a macro that stuffs the version information into the
resulting file. You could use SCCS, RCS, CVS, something else, or
omit it completely. This is not the same as the version id included
in SMTP greeting messages -- this is defined in m4/version.m4.

 OSTYPE(`hpux9')dnl

You must specify an OSTYPE to properly configure things such as the
pathname of the help and status files, the flags needed for the local
mailer, and other important things. If you omit it, you will get an
error when you try to build the configuration. Look at the ostype
directory for the list of known operating system types.

 DOMAIN(`CS.Berkeley.EDU')dnl

This example is specific to the Computer Science Division at Berkeley.
You can use "DOMAIN(`generic')" to get a sufficiently bland
definition
that may well work for you, or you can create a customized domain
definition appropriate for your environment.

 MAILER(`local')
 MAILER(`smtp')

These describe the mailers used at the default CS site. The local
mailer is always included automatically. Beware: MAILER declarations
should only be followed by LOCAL_* sections. The general rules are
that the order should be:

 VERSIONID
 OSTYPE
 DOMAIN
 FEATURE
 local macro definitions
 MAILER
 LOCAL_CONFIG
 LOCAL_RULE_*
 LOCAL_RULESETS

There are a few exceptions to this rule. Local macro definitions which
influence a FEATURE() should be done before that feature. For example,
a define(`PROCMAIL_MAILER_PATH', ...) should be done before
FEATURE(`local_procmail').

*** BE SURE YOU CUSTOMIZE THESE FILES! They have some ***
*** Berkeley-specific assumptions built in, such as the name ***
*** of their UUCP-relay. You'll want to create your own ***
*** domain description, and use that in place of ***
*** domain/Berkeley.EDU.m4. ***

+----------------------------+
| A BRIEF INTRODUCTION TO M4 |
+----------------------------+

Sendmail uses the M4 macro processor to ``compile'' the configuration
files. The most important thing to know is that M4 is stream-based,
that is, it doesn't understand about lines. For this reason, in some
places you may see the word ``dnl'', which stands for ``delete
through newline''; essentially, it deletes all characters starting
at the ``dnl'' up to and including the next newline character. In
most cases sendmail uses this only to avoid lots of unnecessary
blank lines in the output.

Other important directives are define(A, B) which defines the macro
``A'' to have value ``B''. Macros are expanded as they are read, so
one normally quotes both values to prevent expansion. For example,

 define(`SMART_HOST', `smart.foo.com')

One word of warning: M4 macros are expanded even in lines that appear
to be comments. For example, if you have

 # See FEATURE(`foo') above

it will not do what you expect, because the FEATURE(`foo') will be
expanded. This also applies to

 # And then define the $X macro to be the return address

because ``define'' is an M4 keyword. If you want to use them, surround
them with directed quotes, `like this'.

Since m4 uses single quotes (opening "`" and closing
"'") to quote
arguments, those quotes can't be used in arguments. For example,
it is not possible to define a rejection message containing a single
quote. Usually there are simple workarounds by changing those
messages; in the worst case it might be ok to change the value
directly in the generated .cf file, which however is not advised.

Notice:

This package requires a post-V7 version of m4; if you are running the
4.2bsd, SysV.2, or 7th Edition version. SunOS's /usr/5bin/m4 or
BSD-Net/2's m4 both work. GNU m4 version 1.1 or later also works.
Unfortunately, the M4 on BSDI 1.0 doesn't work -- you'll have to use a
Net/2 or GNU version. GNU m4 is available from
ftp://ftp.gnu.org/pub/gnu/m4/m4-1.4.tar.gz (check for the latest
version).
EXCEPTIONS: DEC's m4 on Digital UNIX 4.x is broken (3.x is fine). Use
GNU
m4 on this platform.

+----------------+

| FILE LOCATIONS |
+----------------+

sendmail 8.9 has introduced a new configuration directory for sendmail
related files, /etc/mail. The new files available for sendmail 8.9 --
the class {R} /etc/mail/relay-domains and the access database
/etc/mail/access -- take advantage of this new directory. Beginning
with
8.10, all files will use this directory by default (some options may be
set by OSTYPE() files). This new directory should help to restore
uniformity to sendmail's file locations.

Below is a table of some of the common changes:

Old filename New filename
------------ ------------
/etc/bitdomain /etc/mail/bitdomain
/etc/domaintable /etc/mail/domaintable
/etc/genericstable /etc/mail/genericstable
/etc/uudomain /etc/mail/uudomain
/etc/virtusertable /etc/mail/virtusertable
/etc/userdb /etc/mail/userdb

/etc/aliases /etc/mail/aliases
/etc/sendmail/aliases /etc/mail/aliases
/etc/ucbmail/aliases /etc/mail/aliases
/usr/adm/sendmail/aliases /etc/mail/aliases
/usr/lib/aliases /etc/mail/aliases
/usr/lib/mail/aliases /etc/mail/aliases
/usr/ucblib/aliases /etc/mail/aliases

/etc/sendmail.cw /etc/mail/local-host-names
/etc/mail/sendmail.cw /etc/mail/local-host-names
/etc/sendmail/sendmail.cw /etc/mail/local-host-names

/etc/sendmail.ct /etc/mail/trusted-users

/etc/sendmail.oE /etc/mail/error-header

/etc/sendmail.hf /etc/mail/helpfile
/etc/mail/sendmail.hf /etc/mail/helpfile
/usr/ucblib/sendmail.hf /etc/mail/helpfile
/etc/ucbmail/sendmail.hf /etc/mail/helpfile
/usr/lib/sendmail.hf /etc/mail/helpfile
/usr/share/lib/sendmail.hf /etc/mail/helpfile
/usr/share/misc/sendmail.hf /etc/mail/helpfile
/share/misc/sendmail.hf /etc/mail/helpfile

/etc/service.switch /etc/mail/service.switch

/etc/sendmail.st /etc/mail/statistics
/etc/mail/sendmail.st /etc/mail/statistics
/etc/mailer/sendmail.st /etc/mail/statistics
/etc/sendmail/sendmail.st /etc/mail/statistics
/usr/lib/sendmail.st /etc/mail/statistics
/usr/ucblib/sendmail.st /etc/mail/statistics

Note that all of these paths actually use a new m4 macro
MAIL_SETTINGS_DIR
to create the pathnames. The default value of this variable is
`/etc/mail/'. If you set this macro to a different value, you MUST
include
a trailing slash.

Notice: all filenames used in a .mc (or .cf) file should be absolute
(starting at the root, i.e., with '/'). Relative filenames most
likely cause surprises during operations (unless otherwise noted).

+--------+
| OSTYPE |
+--------+

You MUST define an operating system environment, or the configuration
file build will puke. There are several environments available; look
at the "ostype" directory for the current list. This macro
changes
things like the location of the alias file and queue directory. Some
of these files are identical to one another.

It is IMPERATIVE that the OSTYPE occur before any MAILER definitions.
In general, the OSTYPE macro should go immediately after any version
information, and MAILER definitions should always go last.

Operating system definitions are usually easy to write. They may
define
the following variables (everything defaults, so an ostype file may be
empty). Unfortunately, the list of configuration-supported systems is
not as broad as the list of source-supported systems, since many of
the source contributors do not include corresponding ostype files.

ALIAS_FILE [/etc/mail/aliases] The location of the text version
 of the alias file(s). It can be a comma-separated
 list of names (but be sure you quote values with
 commas in them -- for example, use
 define(`ALIAS_FILE', `a,b')
 to get "a" and "b" both listed as
alias files;
 otherwise the define() primitive only sees
"a").
HELP_FILE [/etc/mail/helpfile] The name of the file
 containing information printed in response to
 the SMTP HELP command.
QUEUE_DIR [/var/spool/mqueue] The directory containing
 queue files. To use multiple queues, supply
 a value ending with an asterisk. For
 example, /var/spool/mqueue/qd* will use all of the
 directories or symbolic links to directories
 beginning with 'qd' in /var/spool/mqueue as queue
 directories. The names 'qf', 'df', and 'xf' are
 reserved as specific subdirectories for the
 corresponding queue file types as explained in
 doc/op/op.me. See also QUEUE GROUP DEFINITIONS.
MSP_QUEUE_DIR [/var/spool/clientmqueue] The directory
containing

 queue files for the MSP (Mail Submission Program,
 see sendmail/SECURITY).
STATUS_FILE [/etc/mail/statistics] The file containing status
 information.
LOCAL_MAILER_PATH [/bin/mail] The program used to deliver local mail.
LOCAL_MAILER_FLAGS [Prmn9] The flags used by the local mailer.
The
 flags lsDFMAw5:/|@q are always included.
LOCAL_MAILER_ARGS [mail -d $u] The arguments passed to deliver local
 mail.
LOCAL_MAILER_MAX [undefined] If defined, the maximum size of local
 mail that you are willing to accept.
LOCAL_MAILER_MAXMSGS [undefined] If defined, the maximum number of
 messages to deliver in a single connection. Only
 useful for LMTP local mailers.
LOCAL_MAILER_CHARSET [undefined] If defined, messages containing 8-
bit data
 that ARRIVE from an address that resolves to the
 local mailer and which are converted to MIME will be
 labeled with this character set.
LOCAL_MAILER_EOL [undefined] If defined, the string to use as the
 end of line for the local mailer.
LOCAL_MAILER_DSN_DIAGNOSTIC_CODE
 [X-Unix] The DSN Diagnostic-Code value for the
 local mailer. This should be changed with care.
LOCAL_SHELL_PATH [/bin/sh] The shell used to deliver piped email.
LOCAL_SHELL_FLAGS [eu9] The flags used by the shell mailer. The
 flags lsDFM are always included.
LOCAL_SHELL_ARGS [sh -c $u] The arguments passed to deliver
"prog"

 mail.
LOCAL_SHELL_DIR [$z:/] The directory search path in which the
 shell should run.
LOCAL_MAILER_QGRP [undefined] The queue group for the local mailer.
USENET_MAILER_PATH [/usr/lib/news/inews] The name of the program
 used to submit news.
USENET_MAILER_FLAGS [rsDFMmn] The mailer flags for the usenet
mailer.
USENET_MAILER_ARGS [-m -h -n] The command line arguments for the
 usenet mailer. NOTE: Some versions of inews
 (such as those shipped with newer versions of INN)
 use different flags. Double check the defaults
 against the inews man page.
USENET_MAILER_MAX [undefined] The maximum size of messages that will
 be accepted by the usenet mailer.
USENET_MAILER_QGRP [undefined] The queue group for the usenet
mailer.
SMTP_MAILER_FLAGS [undefined] Flags added to SMTP mailer. Default
 flags are `mDFMuX' for all SMTP-based mailers; the
 "esmtp" mailer adds `a'; "smtp8"
adds `8'; and
 "dsmtp" adds `%'.
RELAY_MAILER_FLAGS [undefined] Flags added to the relay mailer.
Default
 flags are `mDFMuX' for all SMTP-based mailers; the
 relay mailer adds `a8'. If this is not defined,
 then SMTP_MAILER_FLAGS is used.

SMTP_MAILER_MAX [undefined] The maximum size of messages that
will
 be transported using the smtp, smtp8, esmtp, or dsmtp
 mailers.
SMTP_MAILER_MAXMSGS [undefined] If defined, the maximum number of
 messages to deliver in a single connection for the
 smtp, smtp8, esmtp, or dsmtp mailers.
SMTP_MAILER_MAXRCPTS [undefined] If defined, the maximum number of
 recipients to deliver in a single connection for the
 smtp, smtp8, esmtp, or dsmtp mailers.
SMTP_MAILER_ARGS [TCP $h] The arguments passed to the smtp mailer.
 About the only reason you would want to change this
 would be to change the default port.
ESMTP_MAILER_ARGS [TCP $h] The arguments passed to the esmtp mailer.
SMTP8_MAILER_ARGS [TCP $h] The arguments passed to the smtp8 mailer.
DSMTP_MAILER_ARGS [TCP $h] The arguments passed to the dsmtp mailer.
RELAY_MAILER_ARGS [TCP $h] The arguments passed to the relay mailer.
SMTP_MAILER_QGRP [undefined] The queue group for the smtp mailer.
ESMTP_MAILER_QGRP [undefined] The queue group for the esmtp mailer.
SMTP8_MAILER_QGRP [undefined] The queue group for the smtp8 mailer.
DSMTP_MAILER_QGRP [undefined] The queue group for the dsmtp mailer.
RELAY_MAILER_QGRP [undefined] The queue group for the relay mailer.
RELAY_MAILER_MAXMSGS [undefined] If defined, the maximum number of
 messages to deliver in a single connection for the
 relay mailer.
SMTP_MAILER_CHARSET [undefined] If defined, messages containing 8-
bit data
 that ARRIVE from an address that resolves to one of
 the SMTP mailers and which are converted to MIME will
 be labeled with this character set.
UUCP_MAILER_PATH [/usr/bin/uux] The program used to send UUCP mail.
UUCP_MAILER_FLAGS [undefined] Flags added to UUCP mailer. Default
 flags are `DFMhuU' (and `m' for uucp-new mailer,
 minus `U' for uucp-dom mailer).
UUCP_MAILER_ARGS [uux - -r -z -a$g -gC $h!rmail ($u)] The arguments
 passed to the UUCP mailer.
UUCP_MAILER_MAX [100000] The maximum size message accepted for
 transmission by the UUCP mailers.
UUCP_MAILER_CHARSET [undefined] If defined, messages containing 8-
bit data
 that ARRIVE from an address that resolves to one of
 the UUCP mailers and which are converted to MIME will
 be labeled with this character set.
UUCP_MAILER_QGRP [undefined] The queue group for the UUCP mailers.
FAX_MAILER_PATH [/usr/local/lib/fax/mailfax] The program used
to
 submit FAX messages.
FAX_MAILER_ARGS [mailfax $u $h $f] The arguments passed to the
FAX
 mailer.
FAX_MAILER_MAX [100000] The maximum size message accepted for
 transmission by FAX.
POP_MAILER_PATH [/usr/lib/mh/spop] The pathname of the POP
mailer.
POP_MAILER_FLAGS [Penu] Flags added to POP mailer. Flags lsDFMq
 are always added.
POP_MAILER_ARGS [pop $u] The arguments passed to the POP
mailer.

POP_MAILER_QGRP [undefined] The queue group for the pop mailer.
PROCMAIL_MAILER_PATH [/usr/local/bin/procmail] The path to the
procmail
 program. This is also used by
 FEATURE(`local_procmail').
PROCMAIL_MAILER_FLAGS [SPhnu9] Flags added to Procmail mailer. Flags
 DFM are always set. This is NOT used by
 FEATURE(`local_procmail'); tweak LOCAL_MAILER_FLAGS
 instead.
PROCMAIL_MAILER_ARGS [procmail -Y -m $h $f $u] The arguments passed
to
 the Procmail mailer. This is NOT used by
 FEATURE(`local_procmail'); tweak LOCAL_MAILER_ARGS
 instead.
PROCMAIL_MAILER_MAX [undefined] If set, the maximum size message
that
 will be accepted by the procmail mailer.
PROCMAIL_MAILER_QGRP [undefined] The queue group for the procmail
mailer.
MAIL11_MAILER_PATH [/usr/etc/mail11] The path to the mail11
mailer.
MAIL11_MAILER_FLAGS [nsFx] Flags for the mail11 mailer.
MAIL11_MAILER_ARGS [mail11 $g $x $h $u] Arguments passed to the
mail11
 mailer.
MAIL11_MAILER_QGRP [undefined] The queue group for the mail11
mailer.
PH_MAILER_PATH [/usr/local/etc/phquery] The path to the
phquery
 program.
PH_MAILER_FLAGS [ehmu] Flags for the phquery mailer. Flags
nrDFM
 are always set.
PH_MAILER_ARGS [phquery -- $u] -- arguments to the phquery
mailer.
PH_MAILER_QGRP [undefined] The queue group for the ph mailer.
CYRUS_MAILER_FLAGS [Ah5@/:|] The flags used by the cyrus mailer.
The
 flags lsDFMnPq are always included.
CYRUS_MAILER_PATH [/usr/cyrus/bin/deliver] The program used to deliver
 cyrus mail.
CYRUS_MAILER_ARGS [deliver -e -m $h -- $u] The arguments passed
 to deliver cyrus mail.
CYRUS_MAILER_MAX [undefined] If set, the maximum size message that
 will be accepted by the cyrus mailer.
CYRUS_MAILER_USER [cyrus:mail] The user and group to become when
 running the cyrus mailer.
CYRUS_MAILER_QGRP [undefined] The queue group for the cyrus mailer.
CYRUS_BB_MAILER_FLAGS [u] The flags used by the cyrusbb mailer.
 The flags lsDFMnP are always included.
CYRUS_BB_MAILER_ARGS [deliver -e -m $u] The arguments passed
 to deliver cyrusbb mail.
CYRUSV2_MAILER_FLAGS [A@/:|m] The flags used by the cyrusv2 mailer.
The
 flags lsDFMnqXz are always included.
CYRUSV2_MAILER_MAXMSGS [undefined] If defined, the maximum number of
 messages to deliver in a single connection for the
 cyrusv2 mailer.

CYRUSV2_MAILER_MAXRCPTS [undefined] If defined, the maximum number of
 recipients to deliver in a single connection for the
 cyrusv2 mailer.
CYRUSV2_MAILER_ARGS [FILE /var/imap/socket/lmtp] The arguments
passed
 to the cyrusv2 mailer. This can be used to
 change the name of the Unix domain socket, or
 to switch to delivery via TCP (e.g., `TCP $h lmtp')
CYRUSV2_MAILER_QGRP [undefined] The queue group for the cyrusv2
mailer.
CYRUSV2_MAILER_CHARSET [undefined] If defined, messages containing 8-
bit data
 that ARRIVE from an address that resolves to one the
 Cyrus mailer and which are converted to MIME will
 be labeled with this character set.
confEBINDIR [/usr/libexec] The directory for executables.
 Currently used for FEATURE(`local_lmtp') and
 FEATURE(`smrsh').
QPAGE_MAILER_FLAGS [mDFMs] The flags used by the qpage mailer.
QPAGE_MAILER_PATH [/usr/local/bin/qpage] The program used to deliver
 qpage mail.
QPAGE_MAILER_ARGS [qpage -l0 -m -P$u] The arguments passed
 to deliver qpage mail.
QPAGE_MAILER_MAX [4096] If set, the maximum size message that
 will be accepted by the qpage mailer.
QPAGE_MAILER_QGRP [undefined] The queue group for the qpage mailer.
LOCAL_PROG_QGRP [undefined] The queue group for the prog
mailer.

Note: to tweak Name_MAILER_FLAGS use the macro MODIFY_MAILER_FLAGS:
MODIFY_MAILER_FLAGS(`Name', `change') where Name is the first part
of the macro Name_MAILER_FLAGS (note: that means Name is entirely in
upper case) and change can be: flags that should be used directly
(thus overriding the default value), or if it starts with `+' (`-')
then those flags are added to (removed from) the default value.
Example:

 MODIFY_MAILER_FLAGS(`LOCAL', `+e')

will add the flag `e' to LOCAL_MAILER_FLAGS. Notice: there are
several smtp mailers all of which are manipulated individually.
See the section MAILERS for the available mailer names.
WARNING: The FEATUREs local_lmtp and local_procmail set
LOCAL_MAILER_FLAGS
unconditionally, i.e., without respecting any definitions in an
OSTYPE setting.

+---------+
| DOMAINS |
+---------+

You will probably want to collect domain-dependent defines into one
file, referenced by the DOMAIN macro. For example, the Berkeley
domain file includes definitions for several internal distinguished
hosts:

UUCP_RELAY The host that will accept UUCP-addressed email.

 If not defined, all UUCP sites must be directly
 connected.
BITNET_RELAY The host that will accept BITNET-addressed email.
 If not defined, the .BITNET pseudo-domain won't work.
DECNET_RELAY The host that will accept DECNET-addressed email.
 If not defined, the .DECNET pseudo-domain and addresses
 of the form node::user will not work.
FAX_RELAY The host that will accept mail to the .FAX pseudo-domain.
 The "fax" mailer overrides this value.
LOCAL_RELAY The site that will handle unqualified names -- that
 is, names without an @domain extension.
 Normally MAIL_HUB is preferred for this function.
 LOCAL_RELAY is mostly useful in conjunction with
 FEATURE(`stickyhost') -- see the discussion of
 stickyhost below. If not set, they are assumed to
 belong on this machine. This allows you to have a
 central site to store a company- or department-wide
 alias database. This only works at small sites,
 and only with some user agents.
LUSER_RELAY The site that will handle lusers -- that is, apparently
 local names that aren't local accounts or aliases. To
 specify a local user instead of a site, set this to
 ``local:username''.

Any of these can be either ``mailer:hostname'' (in which case the
mailer is the internal mailer name, such as ``uucp-new'' and the
hostname
is the name of the host as appropriate for that mailer) or just a
``hostname'', in which case a default mailer type (usually ``relay'',
a variant on SMTP) is used. WARNING: if you have a wildcard MX
record matching your domain, you probably want to define these to
have a trailing dot so that you won't get the mail diverted back
to yourself.

The domain file can also be used to define a domain name, if needed
(using "DD<domain>") and set certain site-wide
features. If all hosts
at your site masquerade behind one email name, you could also use
MASQUERADE_AS here.

You do not have to define a domain -- in particular, if you are a
single machine sitting off somewhere, it is probably more work than
it's worth. This is just a mechanism for combining "domain
dependent
knowledge" into one place.

+---------+
| MAILERS |
+---------+

There are fewer mailers supported in this version than the previous
version, owing mostly to a simpler world. As a general rule, put the
MAILER definitions last in your .mc file.

local The local and prog mailers. You will almost always
 need these; the only exception is if you relay ALL
 your mail to another site. This mailer is included

 automatically.

smtp The Simple Mail Transport Protocol mailer. This does
 not hide hosts behind a gateway or another other
 such hack; it assumes a world where everyone is
 running the name server. This file actually defines
 five mailers: "smtp" for regular (old-style) SMTP
to
 other servers, "esmtp" for extended SMTP to other
 servers, "smtp8" to do SMTP to other servers
without
 converting 8-bit data to MIME (essentially, this is
 your statement that you know the other end is 8-bit
 clean even if it doesn't say so), "dsmtp" to do
on
 demand delivery, and "relay" for transmission to
the
 RELAY_HOST, LUSER_RELAY, or MAIL_HUB.

uucp The UNIX-to-UNIX Copy Program mailer. Actually, this
 defines two mailers, "uucp-old" (a.k.a.
"uucp") and
 "uucp-new" (a.k.a. "suucp"). The
latter is for when you
 know that the UUCP mailer at the other end can handle
 multiple recipients in one transfer. If the smtp mailer
 is included in your configuration, two other mailers
 ("uucp-dom" and "uucp-uudom") are also
defined [warning: you
 MUST specify MAILER(`smtp') before MAILER(`uucp')]. When
you
 include the uucp mailer, sendmail looks for all names in
 class {U} and sends them to the uucp-old mailer; all
 names in class {Y} are sent to uucp-new; and all
 names in class {Z} are sent to uucp-uudom. Note that
 this is a function of what version of rmail runs on
 the receiving end, and hence may be out of your control.
 See the section below describing UUCP mailers in more
 detail.

usenet Usenet (network news) delivery. If this is
specified,
 an extra rule is added to ruleset 0 that forwards all
 local email for users named ``group.usenet'' to the
 ``inews'' program. Note that this works for all groups,
 and may be considered a security problem.

fax Facsimile transmission. This is experimental and based
 on Sam Leffler's HylaFAX software. For more information,
 see http://www.hylafax.org/.

pop Post Office Protocol.

procmail An interface to procmail (does not come with sendmail).
 This is designed to be used in mailertables. For example,
 a common question is "how do I forward all mail for a
given
 domain to a single person?". If you have this mailer

 defined, you could set up a mailertable reading:

 host.com procmail:/etc/procmailrcs/host.com

 with the file /etc/procmailrcs/host.com reading:

 :0 # forward mail for host.com
 ! -oi -f $1 person@other.host

 This would arrange for (anything)@host.com to be sent
 to person@other.host. In a procmail script, $1 is the
 name of the sender and $2 is the name of the recipient.
 If you use this with FEATURE(`local_procmail'), the FEATURE
 should be listed first.

 Of course there are other ways to solve this particular
 problem, e.g., a catch-all entry in a virtusertable.

mail11 The DECnet mail11 mailer, useful only if you have the
mail11
 program from gatekeeper.dec.com:/pub/DEC/gwtools (and
 DECnet, of course). This is for Phase IV DECnet support;
 if you have Phase V at your site you may have additional
 problems.

phquery The phquery program. This is somewhat
counterintuitively
 referenced as the "ph" mailer internally. It can
be used
 to do CCSO name server lookups. The phquery program, which
 this mailer uses, is distributed with the ph client.

cyrus The cyrus and cyrusbb mailers. The cyrus mailer delivers
to
 a local cyrus user. this mailer can make use of the
 "user+detail@local.host" syntax (see
 FEATURE(`preserve_local_plus_detail')); it will deliver the
 mail to the user's "detail" mailbox if the
mailbox's ACL
 permits. The cyrusbb mailer delivers to a system-wide
 cyrus mailbox if the mailbox's ACL permits. The cyrus
 mailer must be defined after the local mailer.

cyrusv2 The mailer for Cyrus v2.x. The cyrusv2 mailer
delivers to
 local cyrus users via LMTP. This mailer can make use of
the
 "user+detail@local.host" syntax (see
 FEATURE(`preserve_local_plus_detail')); it will deliver the
 mail to the user's "detail" mailbox if the
mailbox's ACL
 permits. The cyrusv2 mailer must be defined after the
 local mailer.

qpage A mailer for QuickPage, a pager interface. See
 http://www.qpage.org/ for further information.

The local mailer accepts addresses of the form "user+detail",
where
the "+detail" is not used for mailbox matching but is
available
to certain local mail programs (in particular, see
FEATURE(`local_procmail')). For example, "eric",
"eric+sendmail", and

"eric+sww" all indicate the same user, but additional
arguments <null>,
"sendmail", and "sww" may be provided for use in
sorting mail.

+----------+
| FEATURES |
+----------+

Special features can be requested using the "FEATURE" macro.
For
example, the .mc line:

 FEATURE(`use_cw_file')

tells sendmail that you want to have it read an /etc/mail/local-host-
names
file to get values for class {w}. A FEATURE may contain up to 9
optional parameters -- for example:

 FEATURE(`mailertable', `dbm /usr/lib/mailertable')

The default database map type for the table features can be set with

 define(`DATABASE_MAP_TYPE', `dbm')

which would set it to use ndbm databases. The default is the Berkeley
DB
hash database format. Note that you must still declare a database map
type
if you specify an argument to a FEATURE. DATABASE_MAP_TYPE is only
used
if no argument is given for the FEATURE. It must be specified before
any
feature that uses a map.

Also, features which can take a map definition as an argument can also
take
the special keyword `LDAP'. If that keyword is used, the map will use
the
LDAP definition described in the ``USING LDAP FOR ALIASES, MAPS, AND
CLASSES'' section below.

Available features are:

use_cw_file Read the file /etc/mail/local-host-names file to get
 alternate names for this host. This might be used if you
 were on a host that MXed for a dynamic set of other hosts.

 If the set is static, just including the line
"Cw<name1>
 <name2> ..." (where the names are fully
qualified domain
 names) is probably superior. The actual filename can be
 overridden by redefining confCW_FILE.

use_ct_file Read the file /etc/mail/trusted-users file to get the
 names of users that will be ``trusted'', that is, able to
 set their envelope from address using -f without generating
 a warning message. The actual filename can be overridden
 by redefining confCT_FILE.

redirect Reject all mail addressed to "address.REDIRECT"
with
 a ``551 User has moved; please try <address>''
message.
 If this is set, you can alias people who have left
 to their new address with ".REDIRECT" appended.

nouucp Don't route UUCP addresses. This feature takes one
 parameter:
 `reject': reject addresses which have "!" in the
local
 part unless it originates from a system
 that is allowed to relay.
 `nospecial': don't do anything special with "!".
 Warnings: 1. See the notice in the anti-spam section.
 2. don't remove "!" from OperatorChars if
`reject' is
 given as parameter.

nocanonify Don't pass addresses to $[... $] for canonification
 by default, i.e., host/domain names are considered
canonical,
 except for unqualified names, which must not be used in
this
 mode (violation of the standard). It can be changed by
 setting the DaemonPortOptions modifiers (M=). That is,
 FEATURE(`nocanonify') will be overridden by setting the
 'c' flag. Conversely, if FEATURE(`nocanonify') is not
used,
 it can be emulated by setting the 'C' flag
 (DaemonPortOptions=Modifiers=C). This would generally only
 be used by sites that only act as mail gateways or which
have
 user agents that do full canonification themselves. You
may
 also want to use
 "define(`confBIND_OPTS', `-DNSRCH -DEFNAMES')" to
turn off
 the usual resolver options that do a similar thing.

 An exception list for FEATURE(`nocanonify') can be
 specified with CANONIFY_DOMAIN or CANONIFY_DOMAIN_FILE,
 i.e., a list of domains which are nevertheless passed to
 $[... $] for canonification. This is useful to turn on
 canonification for local domains, e.g., use

 CANONIFY_DOMAIN(`my.domain my') to canonify addresses
 which end in "my.domain" or "my".
 Another way to require canonification in the local
 domain is CANONIFY_DOMAIN(`$=m').

 A trailing dot is added to addresses with more than
 one component in it such that other features which
 expect a trailing dot (e.g., virtusertable) will
 still work.

 If `canonify_hosts' is specified as parameter, i.e.,
 FEATURE(`nocanonify', `canonify_hosts'), then
 addresses which have only a hostname, e.g.,
 <user@host>, will be canonified (and hopefully fully
 qualified), too.

stickyhost This feature is sometimes used with LOCAL_RELAY,
 although it can be used for a different effect with
 MAIL_HUB.

 When used without MAIL_HUB, email sent to
 "user@local.host" are marked as
"sticky" -- that
 is, the local addresses aren't matched against UDB,
 don't go through ruleset 5, and are not forwarded to
 the LOCAL_RELAY (if defined).

 With MAIL_HUB, mail addressed to
"user@local.host"

 is forwarded to the mail hub, with the envelope
 address still remaining "user@local.host".
 Without stickyhost, the envelope would be changed
 to "user@mail_hub", in order to protect against
 mailing loops.

mailertable Include a "mailer table" which can be used to
override
 routing for particular domains (which are not in class {w},
 i.e. local host names). The argument of the FEATURE may
be
 the key definition. If none is specified, the definition
 used is:

 hash /etc/mail/mailertable

 Keys in this database are fully qualified domain names
 or partial domains preceded by a dot -- for example,
 "vangogh.CS.Berkeley.EDU" or
".CS.Berkeley.EDU". As a
 special case of the latter, "." matches any
domain not
 covered by other keys. Values must be of the form:
 mailer:domain
 where "mailer" is the internal mailer name, and
"domain"

 is where to send the message. These maps are not

 reflected into the message header. As a special case,
 the forms:
 local:user
 will forward to the indicated user using the local mailer,
 local:
 will forward to the original user in the e-mail address
 using the local mailer, and
 error:code message
 error:D.S.N:code message
 will give an error message with the indicated SMTP reply
 code and message, where D.S.N is an RFC 1893 compliant
 error code.

domaintable Include a "domain table" which can be used to
provide
 domain name mapping. Use of this should really be
 limited to your own domains. It may be useful if you
 change names (e.g., your company changes names from
 oldname.com to newname.com). The argument of the
 FEATURE may be the key definition. If none is specified,
 the definition used is:

 hash /etc/mail/domaintable

 The key in this table is the domain name; the value is
 the new (fully qualified) domain. Anything in the
 domaintable is reflected into headers; that is, this
 is done in ruleset 3.

bitdomain Look up bitnet hosts in a table to try to turn them into
 internet addresses. The table can be built using the
 bitdomain program contributed by John Gardiner Myers.
 The argument of the FEATURE may be the key definition; if
 none is specified, the definition used is:

 hash /etc/mail/bitdomain

 Keys are the bitnet hostname; values are the corresponding
 internet hostname.

uucpdomain Similar feature for UUCP hosts. The default map definition
 is:

 hash /etc/mail/uudomain

 At the moment there is no automagic tool to build this
 database.

always_add_domain
 Include the local host domain even on locally delivered
 mail. Normally it is not added on unqualified names.
 However, if you use a shared message store but do not use
 the same user name space everywhere, you may need the host
 name on local names. An optional argument specifies
 another domain to be added than the local.

allmasquerade If masquerading is enabled (using MASQUERADE_AS),
this

 feature will cause recipient addresses to also masquerade
 as being from the masquerade host. Normally they get
 the local hostname. Although this may be right for
 ordinary users, it can break local aliases. For example,
 if you send to "localalias", the originating
sendmail will
 find that alias and send to all members, but send the
 message with "To: localalias@masqueradehost".
Since that
 alias likely does not exist, replies will fail. Use this
 feature ONLY if you can guarantee that the ENTIRE
 namespace on your masquerade host supersets all the
 local entries.

limited_masquerade
 Normally, any hosts listed in class {w} are masqueraded.
If
 this feature is given, only the hosts listed in class {M}
(see
 below: MASQUERADE_DOMAIN) are masqueraded. This is useful
 if you have several domains with disjoint namespaces hosted
 on the same machine.

masquerade_entire_domain
 If masquerading is enabled (using MASQUERADE_AS) and
 MASQUERADE_DOMAIN (see below) is set, this feature will
 cause addresses to be rewritten such that the masquerading
 domains are actually entire domains to be hidden. All
 hosts within the masquerading domains will be rewritten
 to the masquerade name (used in MASQUERADE_AS). For
example,
 if you have:

 MASQUERADE_AS(`masq.com')
 MASQUERADE_DOMAIN(`foo.org')
 MASQUERADE_DOMAIN(`bar.com')

 then *foo.org and *bar.com are converted to masq.com.
Without
 this feature, only foo.org and bar.com are masqueraded.

 NOTE: only domains within your jurisdiction and
 current hierarchy should be masqueraded using this.

local_no_masquerade
 This feature prevents the local mailer from masquerading
even
 if MASQUERADE_AS is used. MASQUERADE_AS will only have
effect
 on addresses of mail going outside the local domain.

masquerade_envelope
 If masquerading is enabled (using MASQUERADE_AS) or the
 genericstable is in use, this feature will cause envelope
 addresses to also masquerade as being from the masquerade
 host. Normally only the header addresses are masqueraded.

genericstable This feature will cause unqualified addresses (i.e.,
without
 a domain) and addresses with a domain listed in class {G}
 to be looked up in a map and turned into another
("generic")
 form, which can change both the domain name and the user
name.
 Notice: if you use an MSP (as it is default starting with
 8.12), the MTA will only receive qualified addresses from
the
 MSP (as required by the RFCs). Hence you need to add your
 domain to class {G}. This feature is similar to the userdb
 functionality. The same types of addresses as for
 masquerading are looked up, i.e., only header sender
 addresses unless the allmasquerade and/or
masquerade_envelope
 features are given. Qualified addresses must have the
domain
 part in class {G}; entries can be added to this class by
the
 macros GENERICS_DOMAIN or GENERICS_DOMAIN_FILE (analogously
 to MASQUERADE_DOMAIN and MASQUERADE_DOMAIN_FILE, see
below).

 The argument of FEATURE(`genericstable') may be the map
 definition; the default map definition is:

 hash /etc/mail/genericstable

 The key for this table is either the full address, the
domain
 (with a leading @; the localpart is passed as first
argument)
 or the unqualified username (tried in the order mentioned);
 the value is the new user address. If the new user address
 does not include a domain, it will be qualified in the
standard
 manner, i.e., using $j or the masquerade name. Note that
the
 address being looked up must be fully qualified. For local
 mail, it is necessary to use FEATURE(`always_add_domain')
 for the addresses to be qualified.
 The "+detail" of an address is passed as %1, so
entries like

 old+*@foo.org new+%1@example.com
 gen+*@foo.org %1@example.com

 and other forms are possible.

generics_entire_domain
 If the genericstable is enabled and GENERICS_DOMAIN or
 GENERICS_DOMAIN_FILE is used, this feature will cause
 addresses to be searched in the map if their domain
 parts are subdomains of elements in class {G}.

virtusertable A domain-specific form of aliasing, allowing multiple
 virtual domains to be hosted on one machine. For example,

 if the virtuser table contains:

 info@foo.com foo-info
 info@bar.com bar-info
 joe@bar.com error:nouser 550 No such user here
 jax@bar.com error:5.7.0:550 Address invalid
 @baz.org jane@example.net

 then mail addressed to info@foo.com will be sent to the
 address foo-info, mail addressed to info@bar.com will be
 delivered to bar-info, and mail addressed to anyone at
baz.org
 will be sent to jane@example.net, mail to joe@bar.com will
 be rejected with the specified error message, and mail to
 jax@bar.com will also have a RFC 1893 compliant error code
 5.7.0.

 The username from the original address is passed
 as %1 allowing:

 @foo.org %1@example.com

 meaning someone@foo.org will be sent to
someone@example.com.
 Additionally, if the local part consists of
"user+detail"
 then "detail" is passed as %2 and
"+detail" is passed as %3
 when a match against user+* is attempted, so entries like

 old+*@foo.org new+%2@example.com
 gen+*@foo.org %2@example.com
 +*@foo.org %1%3@example.com
 X++@foo.org Z%3@example.com
 @bar.org %1%3

 and other forms are possible. Note: to preserve
"+detail"

 for a default case (@domain) %1%3 must be used as RHS.
 There are two wildcards after "+": "+"
matches only a non-empty
 detail, "*" matches also empty details, e.g.,
user+@foo.org
 matches +*@foo.org but not ++@foo.org. This can be used
 to ensure that the parameters %2 and %3 are not empty.

 All the host names on the left hand side (foo.com, bar.com,
 and baz.org) must be in class {w} or class {VirtHost}. The
 latter can be defined by the macros VIRTUSER_DOMAIN or
 VIRTUSER_DOMAIN_FILE (analogously to MASQUERADE_DOMAIN and
 MASQUERADE_DOMAIN_FILE, see below). If VIRTUSER_DOMAIN or
 VIRTUSER_DOMAIN_FILE is used, then the entries of class
 {VirtHost} are added to class {R}, i.e., relaying is
allowed
 to (and from) those domains. The default map definition
is:

 hash /etc/mail/virtusertable

 A new definition can be specified as the second argument of
 the FEATURE macro, such as

 FEATURE(`virtusertable', `dbm /etc/mail/virtusers')

virtuser_entire_domain
 If the virtusertable is enabled and VIRTUSER_DOMAIN or
 VIRTUSER_DOMAIN_FILE is used, this feature will cause
 addresses to be searched in the map if their domain
 parts are subdomains of elements in class {VirtHost}.

ldap_routing Implement LDAP-based e-mail recipient routing
according to
 the Internet Draft draft-lachman-laser-ldap-mail-routing-
01.
 This provides a method to re-route addresses with a
 domain portion in class {LDAPRoute} to either a
 different mail host or a different address. Hosts can
 be added to this class using LDAPROUTE_DOMAIN and
 LDAPROUTE_DOMAIN_FILE (analogously to MASQUERADE_DOMAIN and
 MASQUERADE_DOMAIN_FILE, see below).

 See the LDAP ROUTING section below for more information.

nodns If you aren't running DNS at your site (for example,
 you are UUCP-only connected). It's hard to consider
 this a "feature", but hey, it had to go
somewhere.
 Actually, as of 8.7 this is a no-op -- remove
"dns" from
 the hosts service switch entry instead.

nullclient This is a special case -- it creates a configuration file
 containing nothing but support for forwarding all mail to a
 central hub via a local SMTP-based network. The argument
 is the name of that hub.

 The only other feature that should be used in conjunction
 with this one is FEATURE(`nocanonify'). No mailers
 should be defined. No aliasing or forwarding is done.

local_lmtp Use an LMTP capable local mailer. The argument to this
 feature is the pathname of an LMTP capable mailer. By
 default, mail.local is used. This is expected to be the
 mail.local which came with the 8.9 distribution which is
 LMTP capable. The path to mail.local is set by the
 confEBINDIR m4 variable -- making the default
 LOCAL_MAILER_PATH /usr/libexec/mail.local.
 If a different LMTP capable mailer is used, its pathname
 can be specified as second parameter and the arguments
 passed to it (A=) as third parameter, e.g.,

 FEATURE(`local_lmtp', `/usr/local/bin/lmtp', `lmtp')

 WARNING: This feature sets LOCAL_MAILER_FLAGS
unconditionally,

 i.e., without respecting any definitions in an OSTYPE
setting.

local_procmail Use procmail or another delivery agent as the local
mailer.
 The argument to this feature is the pathname of the
 delivery agent, which defaults to PROCMAIL_MAILER_PATH.
 Note that this does NOT use PROCMAIL_MAILER_FLAGS or
 PROCMAIL_MAILER_ARGS for the local mailer; tweak
 LOCAL_MAILER_FLAGS and LOCAL_MAILER_ARGS instead, or
 specify the appropriate parameters. When procmail is used,
 the local mailer can make use of the
 "user+indicator@local.host" syntax; normally the
+indicator
 is just tossed, but by default it is passed as the -a
 argument to procmail.

 This feature can take up to three arguments:

 1. Path to the mailer program
 [default: /usr/local/bin/procmail]
 2. Argument vector including name of the program
 [default: procmail -Y -a $h -d $u]
 3. Flags for the mailer [default: SPfhn9]

 Empty arguments cause the defaults to be taken.
 Note that if you are on a system with a broken
 setreuid() call, you may need to add -f $f to the procmail
 argument vector to pass the proper sender to procmail.

 For example, this allows it to use the maildrop
 (http://www.flounder.net/~mrsam/maildrop/) mailer instead
 by specifying:

 FEATURE(`local_procmail', `/usr/local/bin/maildrop',
 `maildrop -d $u')

 or scanmails using:

 FEATURE(`local_procmail', `/usr/local/bin/scanmails')

 WARNING: This feature sets LOCAL_MAILER_FLAGS
unconditionally,
 i.e., without respecting any definitions in an OSTYPE
setting.

bestmx_is_local Accept mail as though locally addressed for any host
that
 lists us as the best possible MX record. This generates
 additional DNS traffic, but should be OK for low to
 medium traffic hosts. The argument may be a set of
 domains, which will limit the feature to only apply to
 these domains -- this will reduce unnecessary DNS
 traffic. THIS FEATURE IS FUNDAMENTALLY INCOMPATIBLE WITH
 WILDCARD MX RECORDS!!! If you have a wildcard MX record
 that matches your domain, you cannot use this feature.

smrsh Use the SendMail Restricted SHell (smrsh) provided

 with the distribution instead of /bin/sh for mailing
 to programs. This improves the ability of the local
 system administrator to control what gets run via
 e-mail. If an argument is provided it is used as the
 pathname to smrsh; otherwise, the path defined by
 confEBINDIR is used for the smrsh binary -- by default,
 /usr/libexec/smrsh is assumed.

promiscuous_relay
 By default, the sendmail configuration files do not permit
 mail relaying (that is, accepting mail from outside your
 local host (class {w}) and sending it to another host than
 your local host). This option sets your site to allow
 mail relaying from any site to any site. In almost all
 cases, it is better to control relaying more carefully
 with the access map, class {R}, or authentication. Domains
 can be added to class {R} by the macros RELAY_DOMAIN or
 RELAY_DOMAIN_FILE (analogously to MASQUERADE_DOMAIN and
 MASQUERADE_DOMAIN_FILE, see below).

relay_entire_domain
 This option allows any host in your domain as defined by
 class {m} to use your server for relaying. Notice: make
 sure that your domain is not just a top level domain,
 e.g., com. This can happen if you give your host a name
 like example.com instead of host.example.com.

relay_hosts_only
 By default, names that are listed as RELAY in the access
 db and class {R} are treated as domain names, not host
names.
 For example, if you specify ``foo.com'', then mail to or
 from foo.com, abc.foo.com, or a.very.deep.domain.foo.com
 will all be accepted for relaying. This feature changes
 the behaviour to lookup individual host names only.

relay_based_on_MX
 Turns on the ability to allow relaying based on the MX
 records of the host portion of an incoming recipient; that
 is, if an MX record for host foo.com points to your site,
 you will accept and relay mail addressed to foo.com. See
 description below for more information before using this
 feature. Also, see the KNOWNBUGS entry regarding bestmx
 map lookups.

 FEATURE(`relay_based_on_MX') does not necessarily allow
 routing of these messages which you expect to be allowed,
 if route address syntax (or %-hack syntax) is used. If
 this is a problem, add entries to the access-table or use
 FEATURE(`loose_relay_check').

relay_mail_from
 Allows relaying if the mail sender is listed as RELAY in
 the access map. If an optional argument `domain' (this
 is the literal word `domain', not a placeholder) is given,
 relaying can be allowed just based on the domain portion
 of the sender address. This feature should only be used if
 absolutely necessary as the sender address can be easily

 forged. Use of this feature requires the "From:"
tag to
 be used for the key in the access map; see the discussion
 of tags and FEATURE(`relay_mail_from') in the section on
 anti-spam configuration control.

relay_local_from
 Allows relaying if the domain portion of the mail sender
 is a local host. This should only be used if absolutely
 necessary as it opens a window for spammers. Specifically,
 they can send mail to your mail server that claims to be
 from your domain (either directly or via a routed address),
 and you will go ahead and relay it out to arbitrary hosts
 on the Internet.

accept_unqualified_senders
 Normally, MAIL FROM: commands in the SMTP session will be
 refused if the connection is a network connection and the
 sender address does not include a domain name. If your
 setup sends local mail unqualified (i.e., MAIL
FROM:<joe>),
 you will need to use this feature to accept unqualified
 sender addresses. Setting the DaemonPortOptions modifier
 'u' overrides the default behavior, i.e., unqualified
 addresses are accepted even without this FEATURE.
 If this FEATURE is not used, the DaemonPortOptions modifier
 'f' can be used to enforce fully qualified addresses.

accept_unresolvable_domains
 Normally, MAIL FROM: commands in the SMTP session will be
 refused if the host part of the argument to MAIL FROM:
 cannot be located in the host name service (e.g., an A or
 MX record in DNS). If you are inside a firewall that has
 only a limited view of the Internet host name space, this
 could cause problems. In this case you probably want to
 use this feature to accept all domains on input, even if
 they are unresolvable.

access_db Turns on the access database feature. The access db gives
 you the ability to allow or refuse to accept mail from
 specified domains for administrative reasons. Moreover,
 it can control the behavior of sendmail in various
situations.
 By default, the access database specification is:

 hash -T<TMPF> /etc/mail/access

 See the anti-spam configuration control section for further
 important information about this feature. Notice:
 "-T<TMPF>" is meant literal, do not replace
it by anything.

blacklist_recipients
 Turns on the ability to block incoming mail for certain
 recipient usernames, hostnames, or addresses. For
 example, you can block incoming mail to user nobody,
 host foo.mydomain.com, or guest@bar.mydomain.com.
 These specifications are put in the access db as

 described in the anti-spam configuration control section
 later in this document.

delay_checks The rulesets check_mail and check_relay will not be
called
 when a client connects or issues a MAIL command,
respectively.
 Instead, those rulesets will be called by the check_rcpt
 ruleset; they will be skipped under certain circumstances.
 See "Delay all checks" in the anti-spam
configuration control
 section. Note: this feature is incompatible to the
versions
 in 8.10 and 8.11.

use_client_ptr If this feature is enabled then check_relay will
override
 its first argument with $&{client_ptr}. This is useful
for
 rejections based on the unverified hostname of client,
 which turns on the same behavior as in earlier sendmail
 versions when delay_checks was not in use. See doc/op/op.*
 about check_relay, {client_name}, and {client_ptr}.

dnsbl Turns on rejection of hosts found in an DNS based rejection
 list. If an argument is provided it is used as the domain
 in which blocked hosts are listed; otherwise it defaults to
 blackholes.mail-abuse.org. An explanation for an DNS based
 rejection list can be found at http://mail-abuse.org/rbl/.
 A second argument can be used to change the default error
 message. Without that second argument, the error message
 will be
 Rejected: IP-ADDRESS listed at SERVER
 where IP-ADDRESS and SERVER are replaced by the appropriate
 information. By default, temporary lookup failures are
 ignored. This behavior can be changed by specifying a
 third argument, which must be either `t' or a full error
 message. See the anti-spam configuration control section
for
 an example. The dnsbl feature can be included several
times
 to query different DNS based rejection lists. See also
 enhdnsbl for an enhanced version.

 Set the DNSBL_MAP mc option to change the default map
 definition from `host'. Set the DNSBL_MAP_OPT mc option
 to add additional options to the map specification used.

 Some DNS based rejection lists cause failures if asked
 for AAAA records. If your sendmail version is compiled
 with IPv6 support (NETINET6) and you experience this
 problem, add

 define(`DNSBL_MAP', `dns -R A')

 before the first use of this feature. Alternatively you
 can use enhdnsbl instead (see below). Moreover, this
 statement can be used to reduce the number of DNS retries,

 e.g.,

 define(`DNSBL_MAP', `dns -R A -r2')

 See below (EDNSBL_TO) for an explanation.

 NOTE: The default DNS blacklist, blackholes.mail-abuse.org,
 is a service offered by the Mail Abuse Prevention System
 (MAPS). As of July 31, 2001, MAPS is a subscription
 service, so using that network address won't work if you
 haven't subscribed. Contact MAPS to subscribe
 (http://mail-abuse.org/).

enhdnsbl Enhanced version of dnsbl (see above). Further arguments
 (up to 5) can be used to specify specific return values
 from lookups. Temporary lookup failures are ignored unless
 a third argument is given, which must be either `t' or a
full
 error message. By default, any successful lookup will
 generate an error. Otherwise the result of the lookup is
 compared with the supplied argument(s), and only if a match
 occurs an error is generated. For example,

 FEATURE(`enhdnsbl', `dnsbl.example.com', `', `t',
`127.0.0.2.')

 will reject the e-mail if the lookup returns the value
 ``127.0.0.2.'', or generate a 451 response if the lookup
 temporarily failed. The arguments can contain metasymbols
 as they are allowed in the LHS of rules. As the example
 shows, the default values are also used if an empty
argument,
 i.e., `', is specified. This feature requires that
sendmail
 has been compiled with the flag DNSMAP (see
sendmail/README).

 Set the EDNSBL_TO mc option to change the DNS retry count
 from the default value of 5, this can be very useful when
 a DNS server is not responding, which in turn may cause
 clients to time out (an entry stating

 did not issue MAIL/EXPN/VRFY/ETRN

 will be logged).

ratecontrol Enable simple ruleset to do connection rate control
 checking. This requires entries in access_db of the form

 ClientRate:IP.ADD.RE.SS LIMIT

 The RHS specifies the maximum number of connections
 (an integer number) over the time interval defined
 by ConnectionRateWindowSize, where 0 means unlimited.

 Take the following example:

 ClientRate:10.1.2.3 4

 ClientRate:127.0.0.1 0
 ClientRate: 10

 10.1.2.3 can only make up to 4 connections, the
 general limit it 10, and 127.0.0.1 can make an unlimited
 number of connections per ConnectionRateWindowSize.

 See also CONNECTION CONTROL.

conncontrol Enable a simple check of the number of incoming SMTP
 connections. This requires entries in access_db of the
 form

 ClientConn:IP.ADD.RE.SS LIMIT

 The RHS specifies the maximum number of open connections
 (an integer number).

 Take the following example:

 ClientConn:10.1.2.3 4
 ClientConn:127.0.0.1 0
 ClientConn: 10

 10.1.2.3 can only have up to 4 open connections, the
 general limit it 10, and 127.0.0.1 does not have any
 explicit limit.

 See also CONNECTION CONTROL.

mtamark Experimental support for "Marking Mail Transfer
Agents in
 Reverse DNS with TXT RRs" (MTAMark), see
 draft-stumpf-dns-mtamark-01. Optional arguments are:

 1. Error message, default:

 550 Rejected: $&{client_addr} not listed as MTA

 2. Temporary lookup failures are ignored unless a second
 argument is given, which must be either `t' or a full
 error message.

 3. Lookup prefix, default: _perm._smtp._srv. This should
 not be changed unless the draft changes it.

 Example:

 FEATURE(`mtamark', `', `t')

lookupdotdomain Look up also .domain in the access map. This allows
to
 match only subdomains. It does not work well with
 FEATURE(`relay_hosts_only'), because most lookups for
 subdomains are suppressed by the latter feature.

loose_relay_check
 Normally, if % addressing is used for a recipient, e.g.

 user%site@othersite, and othersite is in class {R}, the
 check_rcpt ruleset will strip @othersite and recheck
 user@site for relaying. This feature changes that
 behavior. It should not be needed for most installations.

authinfo Provide a separate map for client side authentication
 information. See SMTP AUTHENTICATION for details.
 By default, the authinfo database specification is:

 hash /etc/mail/authinfo

preserve_luser_host
 Preserve the name of the recipient host if LUSER_RELAY is
 used. Without this option, the domain part of the
 recipient address will be replaced by the host specified as
 LUSER_RELAY. This feature only works if the hostname is
 passed to the mailer (see mailer triple in op.me). Note
 that in the default configuration the local mailer does not
 receive the hostname, i.e., the mailer triple has an empty
 hostname.

preserve_local_plus_detail
 Preserve the +detail portion of the address when passing
 address to local delivery agent. Disables alias and
 .forward +detail stripping (e.g., given user+detail, only
 that address will be looked up in the alias file; user+*
and
 user will not be looked up). Only use if the local
 delivery agent in use supports +detail addressing.

compat_check Enable ruleset check_compat to look up pairs of
addresses
 with the Compat: tag -- Compat:sender<@>recipient --
in the
 access map. Valid values for the RHS include
 DISCARD silently discard recipient
 TEMP: return a temporary error
 ERROR: return a permanent error
 In the last two cases, a 4xy/5xy SMTP reply code should
 follow the colon.

no_default_msa Don't generate the default MSA daemon, i.e.,
 DAEMON_OPTIONS(`Port=587,Name=MSA,M=E')
 To define a MSA daemon with other parameters, use this
 FEATURE and introduce new settings via DAEMON_OPTIONS().

msp Defines config file for Message Submission Program.
 See sendmail/SECURITY for details and cf/cf/submit.mc how
 to use it. An optional argument can be used to override
 the default of `[localhost]' to use as host to send all
 e-mails to. Note that MX records will be used if the
 specified hostname is not in square brackets (e.g.,
 [hostname]). If `MSA' is specified as second argument then
 port 587 is used to contact the server. Example:

 FEATURE(`msp', `', `MSA')

 Some more hints about possible changes can be found below

 in the section MESSAGE SUBMISSION PROGRAM.

 Note: Due to many problems, submit.mc uses

 FEATURE(`msp', `[127.0.0.1]')

 by default. If you have a machine with IPv6 only,
 change it to

 FEATURE(`msp', `[IPv6:::1]')

 If you want to continue using '[localhost]', (the behavior
 up to 8.12.6), use

 FEATURE(`msp')

queuegroup A simple example how to select a queue group based
 on the full e-mail address or the domain of the
 recipient. Selection is done via entries in the
 access map using the tag QGRP:, for example:

 QGRP:example.com main
 QGRP:friend@some.org others
 QGRP:my.domain local

 where "main", "others", and
"local" are names of
 queue groups. If an argument is specified, it is used
 as default queue group.

 Note: please read the warning in doc/op/op.me about
 queue groups and possible queue manipulations.

greet_pause Adds the greet_pause ruleset which enables open proxy
 and SMTP slamming protection. The feature can take an
 argument specifying the milliseconds to wait:

 FEATURE(`greet_pause', `5000') dnl 5 seconds

 If FEATURE(`access_db') is enabled, an access database
 lookup with the GreetPause tag is done using client
 hostname, domain, IP address, or subnet to determine the
 pause time:

 GreetPause:my.domain 0
 GreetPause:example.com 5000
 GreetPause:10.1.2 2000
 GreetPause:127.0.0.1 0

 When using FEATURE(`access_db'), the optional
 FEATURE(`greet_pause') argument becomes the default if
 nothing is found in the access database. A ruleset called
 Local_greet_pause can be used for local modifications,
e.g.,

 LOCAL_RULESETS
 SLocal_greet_pause
 R$* $: $&{daemon_flags}

 R$* a $* $# 0

+-------+
| HACKS |
+-------+

Some things just can't be called features. To make this clear,
they go in the hack subdirectory and are referenced using the HACK
macro. These will tend to be site-dependent. The release
includes the Berkeley-dependent "cssubdomain" hack (that
makes
sendmail accept local names in either Berkeley.EDU or CS.Berkeley.EDU;
this is intended as a short-term aid while moving hosts into
subdomains.

+--------------------+
| SITE CONFIGURATION |
+--------------------+

 * This section is really obsolete, and is preserved *
 * only for back compatibility. You should plan on *
 * using mailertables for new installations. In *
 * particular, it doesn't work for the newer forms *
 * of UUCP mailers, such as uucp-uudom. *

Complex sites will need more local configuration information, such as
lists of UUCP hosts they speak with directly. This can get a bit more
tricky. For an example of a "complex" site, see
cf/ucbvax.mc.

The SITECONFIG macro allows you to indirectly reference site-dependent
configuration information stored in the siteconfig subdirectory. For
example, the line

 SITECONFIG(`uucp.ucbvax', `ucbvax', `U')

reads the file uucp.ucbvax for local connection information. The
second parameter is the local name (in this case just
"ucbvax" since
it is locally connected, and hence a UUCP hostname). The third
parameter is the name of both a macro to store the local name (in
this case, {U}) and the name of the class (e.g., {U}) in which to store
the host information read from the file. Another SITECONFIG line reads

 SITECONFIG(`uucp.ucbarpa', `ucbarpa.Berkeley.EDU', `W')

This says that the file uucp.ucbarpa contains the list of UUCP sites
connected to ucbarpa.Berkeley.EDU. Class {W} will be used to
store this list, and $W is defined to be ucbarpa.Berkeley.EDU, that
is, the name of the relay to which the hosts listed in uucp.ucbarpa
are connected. [The machine ucbarpa is gone now, but this
out-of-date configuration file has been left around to demonstrate
how you might do this.]

Note that the case of SITECONFIG with a third parameter of ``U'' is

special; the second parameter is assumed to be the UUCP name of the
local site, rather than the name of a remote site, and the UUCP name
is entered into class {w} (the list of local hostnames) as $U.UUCP.

The siteconfig file (e.g., siteconfig/uucp.ucbvax.m4) contains nothing
more than a sequence of SITE macros describing connectivity. For
example:

 SITE(`cnmat')
 SITE(`sgi olympus')

The second example demonstrates that you can use two names on the
same line; these are usually aliases for the same host (or are at
least in the same company).

The macro LOCAL_UUCP can be used to add rules into the generated
cf file at the place where MAILER(`uucp') inserts its rules. This
should only be used if really necessary.

+--------------------+
| USING UUCP MAILERS |
+--------------------+

It's hard to get UUCP mailers right because of the extremely ad hoc
nature of UUCP addressing. These config files are really designed
for domain-based addressing, even for UUCP sites.

There are four UUCP mailers available. The choice of which one to
use is partly a matter of local preferences and what is running at
the other end of your UUCP connection. Unlike good protocols that
define what will go over the wire, UUCP uses the policy that you
should do what is right for the other end; if they change, you have
to change. This makes it hard to do the right thing, and discourages
people from updating their software. In general, if you can avoid
UUCP, please do.

The major choice is whether to go for a domainized scheme or a
non-domainized scheme. This depends entirely on what the other
end will recognize. If at all possible, you should encourage the
other end to go to a domain-based system -- non-domainized addresses
don't work entirely properly.

The four mailers are:

 uucp-old (obsolete name: "uucp")
 This is the oldest, the worst (but the closest to UUCP) way of
 sending messages across UUCP connections. It does bangify
 everything and prepends $U (your UUCP name) to the sender's
 address (which can already be a bang path itself). It can
 only send to one address at a time, so it spends a lot of
 time copying duplicates of messages. Avoid this if at all
 possible.

 uucp-new (obsolete name: "suucp")
 The same as above, except that it assumes that in one rmail
 command you can specify several recipients. It still has a
 lot of other problems.

 uucp-dom
 This UUCP mailer keeps everything as domain addresses.
 Basically, it uses the SMTP mailer rewriting rules. This mailer
 is only included if MAILER(`smtp') is specified before
 MAILER(`uucp').

 Unfortunately, a lot of UUCP mailer transport agents require
 bangified addresses in the envelope, although you can use
 domain-based addresses in the message header. (The envelope
 shows up as the From_ line on UNIX mail.) So....

 uucp-uudom
 This is a cross between uucp-new (for the envelope addresses)
 and uucp-dom (for the header addresses). It bangifies the
 envelope sender (From_ line in messages) without adding the
 local hostname, unless there is no host name on the address
 at all (e.g., "wolf") or the host component is a UUCP
host name
 instead of a domain name ("somehost!wolf" instead of
 "some.dom.ain!wolf"). This is also included only if
MAILER(`smtp')
 is also specified earlier.

Examples:

On host grasp.insa-lyon.fr (UUCP host name "grasp"), the
following
summarizes the sender rewriting for various mailers.

Mailer sender rewriting in the envelope
------ ------ -------------------------
uucp-{old,new} wolf grasp!wolf
uucp-dom wolf wolf@grasp.insa-lyon.fr
uucp-uudom wolf grasp.insa-lyon.fr!wolf

uucp-{old,new} wolf@fr.net grasp!fr.net!wolf
uucp-dom wolf@fr.net wolf@fr.net
uucp-uudom wolf@fr.net fr.net!wolf

uucp-{old,new} somehost!wolf grasp!somehost!wolf
uucp-dom somehost!wolf somehost!wolf@grasp.insa-lyon.fr
uucp-uudom somehost!wolf grasp.insa-lyon.fr!somehost!wolf

If you are using one of the domainized UUCP mailers, you really want
to convert all UUCP addresses to domain format -- otherwise, it will
do it for you (and probably not the way you expected). For example,
if you have the address foo!bar!baz (and you are not sending to foo),
the heuristics will add the @uucp.relay.name or @local.host.name to
this address. However, if you map foo to foo.host.name first, it
will not add the local hostname. You can do this using the uucpdomain
feature.

+-------------------+
| TWEAKING RULESETS |
+-------------------+

For more complex configurations, you can define special rules.

The macro LOCAL_RULE_3 introduces rules that are used in canonicalizing
the names. Any modifications made here are reflected in the header.

A common use is to convert old UUCP addresses to SMTP addresses using
the UUCPSMTP macro. For example:

 LOCAL_RULE_3
 UUCPSMTP(`decvax', `decvax.dec.com')
 UUCPSMTP(`research', `research.att.com')

will cause addresses of the form "decvax!user" and
"research!user"

to be converted to "user@decvax.dec.com" and
"user@research.att.com"
respectively.

This could also be used to look up hosts in a database map:

 LOCAL_RULE_3
 R$* < @ $+ > $* $: $1 < @ $(hostmap $2 $) >
$3

This map would be defined in the LOCAL_CONFIG portion, as shown below.

Similarly, LOCAL_RULE_0 can be used to introduce new parsing rules.
For example, new rules are needed to parse hostnames that you accept
via MX records. For example, you might have:

 LOCAL_RULE_0
 R$+ <@ host.dom.ain.> $#uucp $@ cnmat $: $1 < @
host.dom.ain.>

You would use this if you had installed an MX record for
cnmat.Berkeley.EDU
pointing at this host; this rule catches the message and forwards it on
using UUCP.

You can also tweak rulesets 1 and 2 using LOCAL_RULE_1 and
LOCAL_RULE_2.
These rulesets are normally empty.

A similar macro is LOCAL_CONFIG. This introduces lines added after the
boilerplate option setting but before rulesets. Do not declare
rulesets in
the LOCAL_CONFIG section. It can be used to declare local database
maps or
whatever. For example:

 LOCAL_CONFIG
 Khostmap hash /etc/mail/hostmap
 Kyplocal nis -m hosts.byname

+---------------------------+
| MASQUERADING AND RELAYING |
+---------------------------+

You can have your host masquerade as another using

 MASQUERADE_AS(`host.domain')

This causes mail being sent to be labeled as coming from the
indicated host.domain, rather than $j. One normally masquerades as
one of one's own subdomains (for example, it's unlikely that
Berkeley would choose to masquerade as an MIT site). This
behaviour is modified by a plethora of FEATUREs; in particular, see
masquerade_envelope, allmasquerade, limited_masquerade, and
masquerade_entire_domain.

The masquerade name is not normally canonified, so it is important
that it be your One True Name, that is, fully qualified and not a
CNAME. However, if you use a CNAME, the receiving side may canonify
it for you, so don't think you can cheat CNAME mapping this way.

Normally the only addresses that are masqueraded are those that come
from this host (that is, are either unqualified or in class {w}, the
list
of local domain names). You can augment this list, which is realized
by class {M} using

 MASQUERADE_DOMAIN(`otherhost.domain')

The effect of this is that although mail to user@otherhost.domain
will not be delivered locally, any mail including any
user@otherhost.domain
will, when relayed, be rewritten to have the MASQUERADE_AS address.
This can be a space-separated list of names.

If these names are in a file, you can use

 MASQUERADE_DOMAIN_FILE(`filename')

to read the list of names from the indicated file (i.e., to add
elements to class {M}).

To exempt hosts or subdomains from being masqueraded, you can use

 MASQUERADE_EXCEPTION(`host.domain')

This can come handy if you want to masquerade a whole domain
except for one (or a few) host(s). If these names are in a file,
you can use

 MASQUERADE_EXCEPTION_FILE(`filename')

Normally only header addresses are masqueraded. If you want to
masquerade the envelope as well, use

 FEATURE(`masquerade_envelope')

There are always users that need to be "exposed" -- that is,
their
internal site name should be displayed instead of the masquerade name.
Root is an example (which has been "exposed" by default prior
to 8.10).

You can add users to this list using

 EXPOSED_USER(`usernames')

This adds users to class {E}; you could also use

 EXPOSED_USER_FILE(`filename')

You can also arrange to relay all unqualified names (that is, names
without @host) to a relay host. For example, if you have a central
email server, you might relay to that host so that users don't have
to have .forward files or aliases. You can do this using

 define(`LOCAL_RELAY', `mailer:hostname')

The ``mailer:'' can be omitted, in which case the mailer defaults to
"relay". There are some user names that you don't want
relayed, perhaps
because of local aliases. A common example is root, which may be
locally aliased. You can add entries to this list using

 LOCAL_USER(`usernames')

This adds users to class {L}; you could also use

 LOCAL_USER_FILE(`filename')

If you want all incoming mail sent to a centralized hub, as for a
shared /var/spool/mail scheme, use

 define(`MAIL_HUB', `mailer:hostname')

Again, ``mailer:'' defaults to "relay". If you define both
LOCAL_RELAY
and MAIL_HUB _AND_ you have FEATURE(`stickyhost'), unqualified names
will
be sent to the LOCAL_RELAY and other local names will be sent to
MAIL_HUB.
Note: there is a (long standing) bug which keeps this combination from
working for addresses of the form user+detail.
Names in class {L} will be delivered locally, so you MUST have aliases
or
.forward files for them.

For example, if you are on machine mastodon.CS.Berkeley.EDU and you
have
FEATURE(`stickyhost'), the following combinations of settings will have
the
indicated effects:

email sent to.... eric eric@mastodon.CS.Berkeley.EDU

LOCAL_RELAY set to mail.CS.Berkeley.EDU (delivered locally)
mail.CS.Berkeley.EDU (no local aliasing) (aliasing done)

MAIL_HUB set to mammoth.CS.Berkeley.EDU
mammoth.CS.Berkeley.EDU
mammoth.CS.Berkeley.EDU (aliasing done) (aliasing done)

Both LOCAL_RELAY and mail.CS.Berkeley.EDU
mammoth.CS.Berkeley.EDU
MAIL_HUB set as above (no local aliasing) (aliasing done)

If you do not have FEATURE(`stickyhost') set, then LOCAL_RELAY and
MAIL_HUB act identically, with MAIL_HUB taking precedence.

If you want all outgoing mail to go to a central relay site, define
SMART_HOST as well. Briefly:

 LOCAL_RELAY applies to unqualified names (e.g.,
"eric").
 MAIL_HUB applies to names qualified with the name of the
 local host (e.g.,
"eric@mastodon.CS.Berkeley.EDU").
 SMART_HOST applies to names qualified with other hosts or
 bracketed addresses (e.g.,
"eric@mastodon.CS.Berkeley.EDU"

 or "eric@[127.0.0.1]").

However, beware that other relays (e.g., UUCP_RELAY, BITNET_RELAY,
DECNET_RELAY, and FAX_RELAY) take precedence over SMART_HOST, so if you
really want absolutely everything to go to a single central site you
will
need to unset all the other relays -- or better yet, find or build a
minimal config file that does this.

For duplicate suppression to work properly, the host name is best
specified with a terminal dot:

 define(`MAIL_HUB', `host.domain.')
 note the trailing dot ---^

+---+
| USING LDAP FOR ALIASES, MAPS, AND CLASSES |
+---+

LDAP can be used for aliases, maps, and classes by either specifying
your
own LDAP map specification or using the built-in default LDAP map
specification. The built-in default specifications all provide lookups
which match against either the machine's fully qualified hostname
(${j}) or
a "cluster". The cluster allows you to share LDAP entries
among a large
number of machines without having to enter each of the machine names
into
each LDAP entry. To set the LDAP cluster name to use for a particular
machine or set of machines, set the confLDAP_CLUSTER m4 variable to a
unique name. For example:

 define(`confLDAP_CLUSTER', `Servers')

Here, the word `Servers' will be the cluster name. As an example,
assume

that smtp.sendmail.org, etrn.sendmail.org, and mx.sendmail.org all
belong
to the Servers cluster.

Some of the LDAP LDIF examples below show use of the Servers cluster.
Every entry must have either a sendmailMTAHost or sendmailMTACluster
attribute or it will be ignored. Be careful as mixing clusters and
individual host records can have surprising results (see the CAUTION
sections below).

See the file cf/sendmail.schema for the actual LDAP schemas. Note that
this schema (and therefore the lookups and examples below) is
experimental
at this point as it has had little public review. Therefore, it may
change
in future versions. Feedback via sendmail-YYYY@support.sendmail.org is
encouraged (replace YYYY with the current year, e.g., 2005).

Aliases

The ALIAS_FILE (O AliasFile) option can be set to use LDAP for alias
lookups. To use the default schema, simply use:

 define(`ALIAS_FILE', `ldap:')

By doing so, you will use the default schema which expands to a map
declared as follows:

 ldap -k (&(objectClass=sendmailMTAAliasObject)
 (sendmailMTAAliasGrouping=aliases)
 (|(sendmailMTACluster=${sendmailMTACluster})
 (sendmailMTAHost=$j))
 (sendmailMTAKey=%0))
 -v
sendmailMTAAliasValue,sendmailMTAAliasSearch:FILTER:sendmailMTAAliasObj
ect,sendmailMTAAliasURL:URL:sendmailMTAAliasObject

NOTE: The macros shown above ${sendmailMTACluster} and $j are not
actually
used when the binary expands the `ldap:' token as the AliasFile option
is
not actually macro-expanded when read from the sendmail.cf file.

Example LDAP LDIF entries might be:

 dn: sendmailMTAKey=sendmail-list, dc=sendmail, dc=org
 objectClass: sendmailMTA
 objectClass: sendmailMTAAlias
 objectClass: sendmailMTAAliasObject
 sendmailMTAAliasGrouping: aliases
 sendmailMTAHost: etrn.sendmail.org
 sendmailMTAKey: sendmail-list
 sendmailMTAAliasValue: ca@example.org
 sendmailMTAAliasValue: eric
 sendmailMTAAliasValue: gshapiro@example.com

 dn: sendmailMTAKey=owner-sendmail-list, dc=sendmail, dc=org
 objectClass: sendmailMTA
 objectClass: sendmailMTAAlias
 objectClass: sendmailMTAAliasObject
 sendmailMTAAliasGrouping: aliases
 sendmailMTAHost: etrn.sendmail.org
 sendmailMTAKey: owner-sendmail-list
 sendmailMTAAliasValue: eric

 dn: sendmailMTAKey=postmaster, dc=sendmail, dc=org
 objectClass: sendmailMTA
 objectClass: sendmailMTAAlias
 objectClass: sendmailMTAAliasObject
 sendmailMTAAliasGrouping: aliases
 sendmailMTACluster: Servers
 sendmailMTAKey: postmaster
 sendmailMTAAliasValue: eric

Here, the aliases sendmail-list and owner-sendmail-list will be
available
only on etrn.sendmail.org but the postmaster alias will be available on
every machine in the Servers cluster (including etrn.sendmail.org).

CAUTION: aliases are additive so that entries like these:

 dn: sendmailMTAKey=bob, dc=sendmail, dc=org
 objectClass: sendmailMTA
 objectClass: sendmailMTAAlias
 objectClass: sendmailMTAAliasObject
 sendmailMTAAliasGrouping: aliases
 sendmailMTACluster: Servers
 sendmailMTAKey: bob
 sendmailMTAAliasValue: eric

 dn: sendmailMTAKey=bobetrn, dc=sendmail, dc=org
 objectClass: sendmailMTA
 objectClass: sendmailMTAAlias
 objectClass: sendmailMTAAliasObject
 sendmailMTAAliasGrouping: aliases
 sendmailMTAHost: etrn.sendmail.org
 sendmailMTAKey: bob
 sendmailMTAAliasValue: gshapiro

would mean that on all of the hosts in the cluster, mail to bob would
go to
eric EXCEPT on etrn.sendmail.org in which case it would go to BOTH eric
and
gshapiro.

If you prefer not to use the default LDAP schema for your aliases, you
can
specify the map parameters when setting ALIAS_FILE. For example:

 define(`ALIAS_FILE', `ldap:-k
(&(objectClass=mailGroup)(mail=%0)) -v mgrpRFC822MailMember')

Maps

FEATURE()'s which take an optional map definition argument (e.g.,
access,
mailertable, virtusertable, etc.) can instead take the special keyword
`LDAP', e.g.:

 FEATURE(`access_db', `LDAP')
 FEATURE(`virtusertable', `LDAP')

When this keyword is given, that map will use LDAP lookups consisting
of
the objectClass sendmailMTAClassObject, the attribute
sendmailMTAMapName
with the map name, a search attribute of sendmailMTAKey, and the value
attribute sendmailMTAMapValue.

The values for sendmailMTAMapName are:

 FEATURE() sendmailMTAMapName
 --------- ------------------
 access_db access
 authinfo authinfo
 bitdomain bitdomain
 domaintable domain
 genericstable generics
 mailertable mailer
 uucpdomain uucpdomain
 virtusertable virtuser

For example, FEATURE(`mailertable', `LDAP') would use the map
definition:

 Kmailertable ldap -k (&(objectClass=sendmailMTAMapObject)
 (sendmailMTAMapName=mailer)
 (|(sendmailMTACluster=${sendmailMTACluster})
 (sendmailMTAHost=$j))
 (sendmailMTAKey=%0))
 -1 -v
sendmailMTAMapValue,sendmailMTAMapSearch:FILTER:sendmailMTAMapObject,se
ndmailMTAMapURL:URL:sendmailMTAMapObject

An example LDAP LDIF entry using this map might be:

 dn: sendmailMTAMapName=mailer, dc=sendmail, dc=org
 objectClass: sendmailMTA
 objectClass: sendmailMTAMap
 sendmailMTACluster: Servers
 sendmailMTAMapName: mailer

 dn: sendmailMTAKey=example.com, sendmailMTAMapName=mailer,
dc=sendmail, dc=org
 objectClass: sendmailMTA
 objectClass: sendmailMTAMap
 objectClass: sendmailMTAMapObject
 sendmailMTAMapName: mailer
 sendmailMTACluster: Servers

 sendmailMTAKey: example.com
 sendmailMTAMapValue: relay:[smtp.example.com]

CAUTION: If your LDAP database contains the record above and *ALSO* a
host
specific record such as:

 dn: sendmailMTAKey=example.com@etrn, sendmailMTAMapName=mailer,
dc=sendmail, dc=org
 objectClass: sendmailMTA
 objectClass: sendmailMTAMap
 objectClass: sendmailMTAMapObject
 sendmailMTAMapName: mailer
 sendmailMTAHost: etrn.sendmail.org
 sendmailMTAKey: example.com
 sendmailMTAMapValue: relay:[mx.example.com]

then these entries will give unexpected results. When the lookup is
done
on etrn.sendmail.org, the effect is that there is *NO* match at all as
maps
require a single match. Since the host etrn.sendmail.org is also in
the
Servers cluster, LDAP would return two answers for the example.com map
key
in which case sendmail would treat this as no match at all.

If you prefer not to use the default LDAP schema for your maps, you can
specify the map parameters when using the FEATURE(). For example:

 FEATURE(`access_db', `ldap:-1 -k
(&(objectClass=mapDatabase)(key=%0)) -v value')

Classes

Normally, classes can be filled via files or programs. As of 8.12,
they
can also be filled via map lookups using a new syntax:

 F{ClassName}mapkey@mapclass:mapspec

mapkey is optional and if not provided the map key will be empty. This
can
be used with LDAP to read classes from LDAP. Note that the lookup is
only
done when sendmail is initially started. Use the special value `@LDAP'
to
use the default LDAP schema. For example:

 RELAY_DOMAIN_FILE(`@LDAP')

would put all of the attribute sendmailMTAClassValue values of LDAP
records
with objectClass sendmailMTAClass and an attribute sendmailMTAClassName
of
'R' into class $={R}. In other words, it is equivalent to the LDAP map

specification:

 F{R}@ldap:-k (&(objectClass=sendmailMTAClass)
 (sendmailMTAClassName=R)
 (|(sendmailMTACluster=${sendmailMTACluster})
 (sendmailMTAHost=$j)))
 -v
sendmailMTAClassValue,sendmailMTAClassSearch:FILTER:sendmailMTAClass,se
ndmailMTAClassURL:URL:sendmailMTAClass

NOTE: The macros shown above ${sendmailMTACluster} and $j are not
actually
used when the binary expands the `@LDAP' token as class declarations
are
not actually macro-expanded when read from the sendmail.cf file.

This can be used with class related commands such as
RELAY_DOMAIN_FILE(),
MASQUERADE_DOMAIN_FILE(), etc:

 Command sendmailMTAClassName
 ------- --------------------
 CANONIFY_DOMAIN_FILE() Canonify
 EXPOSED_USER_FILE() E
 GENERICS_DOMAIN_FILE() G
 LDAPROUTE_DOMAIN_FILE() LDAPRoute
 LDAPROUTE_EQUIVALENT_FILE() LDAPRouteEquiv
 LOCAL_USER_FILE() L
 MASQUERADE_DOMAIN_FILE() M
 MASQUERADE_EXCEPTION_FILE() N
 RELAY_DOMAIN_FILE() R
 VIRTUSER_DOMAIN_FILE() VirtHost

You can also add your own as any 'F'ile class of the form:

 F{ClassName}@LDAP
 ^^^^^^^^^
will use "ClassName" for the sendmailMTAClassName.

An example LDAP LDIF entry would look like:

 dn: sendmailMTAClassName=R, dc=sendmail, dc=org
 objectClass: sendmailMTA
 objectClass: sendmailMTAClass
 sendmailMTACluster: Servers
 sendmailMTAClassName: R
 sendmailMTAClassValue: sendmail.org
 sendmailMTAClassValue: example.com
 sendmailMTAClassValue: 10.56.23

CAUTION: If your LDAP database contains the record above and *ALSO* a
host
specific record such as:

 dn: sendmailMTAClassName=R@etrn.sendmail.org, dc=sendmail, dc=org
 objectClass: sendmailMTA
 objectClass: sendmailMTAClass
 sendmailMTAHost: etrn.sendmail.org

 sendmailMTAClassName: R
 sendmailMTAClassValue: example.com

the result will be similar to the aliases caution above. When the
lookup
is done on etrn.sendmail.org, $={R} would contain all of the entries
(from
both the cluster match and the host match). In other words, the
effective
is additive.

If you prefer not to use the default LDAP schema for your classes, you
can
specify the map parameters when using the class command. For example:

 VIRTUSER_DOMAIN_FILE(`@ldap:-k
(&(objectClass=virtHosts)(host=*)) -v host')

Remember, macros can not be used in a class declaration as the binary
does
not expand them.

+--------------+
| LDAP ROUTING |
+--------------+

FEATURE(`ldap_routing') can be used to implement the IETF Internet
Draft
LDAP Schema for Intranet Mail Routing
(draft-lachman-laser-ldap-mail-routing-01). This feature enables
LDAP-based rerouting of a particular address to either a different host
or a different address. The LDAP lookup is first attempted on the full
address (e.g., user@example.com) and then on the domain portion
(e.g., @example.com). Be sure to setup your domain for LDAP routing
using
LDAPROUTE_DOMAIN(), e.g.:

 LDAPROUTE_DOMAIN(`example.com')

Additionally, you can specify equivalent domains for LDAP routing using
LDAPROUTE_EQUIVALENT() and LDAPROUTE_EQUIVALENT_FILE(). 'Equivalent'
hostnames are mapped to $M (the masqueraded hostname for the server)
before
the LDAP query. For example, if the mail is addressed to
user@host1.example.com, normally the LDAP lookup would only be done for
'user@host1.example.com' and '@host1.example.com'. However, if
LDAPROUTE_EQUIVALENT(`host1.example.com') is used, the lookups would
also be
done on 'user@example.com' and '@example.com' after attempting the
host1.example.com lookups.

By default, the feature will use the schemas as specified in the draft
and will not reject addresses not found by the LDAP lookup. However,
this behavior can be changed by giving additional arguments to the
FEATURE()
command:

 FEATURE(`ldap_routing', <mailHost>, <mailRoutingAddress>,
<bounce>,
 <detail>, <nodomain>, <tempfail>)

where <mailHost> is a map definition describing how to lookup an
alternative
mail host for a particular address; <mailRoutingAddress> is a map
definition
describing how to lookup an alternative address for a particular
address;
the <bounce> argument, if present and not the word
"passthru", dictates
that mail should be bounced if neither a mailHost nor
mailRoutingAddress
is found, if set to "sendertoo", the sender will be rejected
if not
found in LDAP; and <detail> indicates what actions to take if the
address
contains +detail information -- `strip' tries the lookup with the
+detail
and if no matches are found, strips the +detail and tries the lookup
again;
`preserve', does the same as `strip' but if a mailRoutingAddress match
is
found, the +detail information is copied to the new address; the
<nodomain>

argument, if present, will prevent the @domain lookup if the full
address is not found in LDAP; the <tempfail> argument, if set to
"tempfail", instructs the rules to give an SMTP 4XX temporary
error if the LDAP server gives the MTA a temporary failure, or if set
to
"queue" (the default), the MTA will locally queue the mail.

The default <mailHost> map definition is:

 ldap -1 -T<TMPF> -v mailHost -k
(&(objectClass=inetLocalMailRecipient)
 (mailLocalAddress=%0))

The default <mailRoutingAddress> map definition is:

 ldap -1 -T<TMPF> -v mailRoutingAddress
 -k (&(objectClass=inetLocalMailRecipient)
 (mailLocalAddress=%0))

Note that neither includes the LDAP server hostname (-h server) or base
DN
(-b o=org,c=COUNTRY), both necessary for LDAP queries. It is presumed
that
your .mc file contains a setting for the confLDAP_DEFAULT_SPEC option
with
these settings. If this is not the case, the map definitions should be
changed as described above. The "-T<TMPF>" is required
in any user
specified map definition to catch temporary errors.

The following possibilities exist as a result of an LDAP lookup on an

address:

 mailHost is mailRoutingAddress is Results in
 ----------- --------------------- ----------
 set to a set mail delivered to
 "local" host mailRoutingAddress

 set to a not set delivered to
 "local" host original address

 set to a set mailRoutingAddress
 remote host relayed to mailHost

 set to a not set original address
 remote host relayed to mailHost

 not set set mail delivered to
 mailRoutingAddress

 not set not set delivered to
 original address *OR*
 bounced as unknown user

The term "local" host above means the host specified is in
class {w}. If
the result would mean sending the mail to a different host, that host
is
looked up in the mailertable before delivery.

Note that the last case depends on whether the third argument is given
to the FEATURE() command. The default is to deliver the message to the
original address.

The LDAP entries should be set up with an objectClass of
inetLocalMailRecipient and the address be listed in a mailLocalAddress
attribute. If present, there must be only one mailHost attribute and
it
must contain a fully qualified host name as its value. Similarly, if
present, there must be only one mailRoutingAddress attribute and it
must
contain an RFC 822 compliant address. Some example LDAP records (in
LDIF
format):

 dn: uid=tom, o=example.com, c=US
 objectClass: inetLocalMailRecipient
 mailLocalAddress: tom@example.com
 mailRoutingAddress: thomas@mailhost.example.com

This would deliver mail for tom@example.com to
thomas@mailhost.example.com.

 dn: uid=dick, o=example.com, c=US
 objectClass: inetLocalMailRecipient
 mailLocalAddress: dick@example.com
 mailHost: eng.example.com

This would relay mail for dick@example.com to the same address but
redirect
the mail to MX records listed for the host eng.example.com (unless the
mailertable overrides).

 dn: uid=harry, o=example.com, c=US
 objectClass: inetLocalMailRecipient
 mailLocalAddress: harry@example.com
 mailHost: mktmail.example.com
 mailRoutingAddress: harry@mkt.example.com

This would relay mail for harry@example.com to the MX records listed
for
the host mktmail.example.com using the new address
harry@mkt.example.com
when talking to that host.

 dn: uid=virtual.example.com, o=example.com, c=US
 objectClass: inetLocalMailRecipient
 mailLocalAddress: @virtual.example.com
 mailHost: server.example.com
 mailRoutingAddress: virtual@example.com

This would send all mail destined for any username @virtual.example.com
to
the machine server.example.com's MX servers and deliver to the address
virtual@example.com on that relay machine.

+---------------------------------+
| ANTI-SPAM CONFIGURATION CONTROL |
+---------------------------------+

The primary anti-spam features available in sendmail are:

* Relaying is denied by default.
* Better checking on sender information.
* Access database.
* Header checks.

Relaying (transmission of messages from a site outside your host (class
{w}) to another site except yours) is denied by default. Note that
this
changed in sendmail 8.9; previous versions allowed relaying by default.
If you really want to revert to the old behaviour, you will need to use
FEATURE(`promiscuous_relay'). You can allow certain domains to relay
through your server by adding their domain name or IP address to class
{R} using RELAY_DOMAIN() and RELAY_DOMAIN_FILE() or via the access
database
(described below). Note that IPv6 addresses must be prefaced with
"IPv6:".
The file consists (like any other file based class) of entries listed
on
separate lines, e.g.,

 sendmail.org
 128.32
 IPv6:2002:c0a8:02c7

 IPv6:2002:c0a8:51d2::23f4
 host.mydomain.com
 [UNIX:localhost]

Notice: the last entry allows relaying for connections via a UNIX
socket to the MTA/MSP. This might be necessary if your configuration
doesn't allow relaying by other means in that case, e.g., by having
localhost.$m in class {R} (make sure $m is not just a top level
domain).

If you use

 FEATURE(`relay_entire_domain')

then any host in any of your local domains (that is, class {m})
will be relayed (that is, you will accept mail either to or from any
host in your domain).

You can also allow relaying based on the MX records of the host
portion of an incoming recipient address by using

 FEATURE(`relay_based_on_MX')

For example, if your server receives a recipient of user@domain.com
and domain.com lists your server in its MX records, the mail will be
accepted for relay to domain.com. This feature may cause problems
if MX lookups for the recipient domain are slow or time out. In that
case, mail will be temporarily rejected. It is usually better to
maintain a list of hosts/domains for which the server acts as relay.
Note also that this feature will stop spammers from using your host
to relay spam but it will not stop outsiders from using your server
as a relay for their site (that is, they set up an MX record pointing
to your mail server, and you will relay mail addressed to them
without any prior arrangement). Along the same lines,

 FEATURE(`relay_local_from')

will allow relaying if the sender specifies a return path (i.e.
MAIL FROM:<user@domain>) domain which is a local domain. This is
a
dangerous feature as it will allow spammers to spam using your mail
server by simply specifying a return address of user@your.domain.com.
It should not be used unless absolutely necessary.
A slightly better solution is

 FEATURE(`relay_mail_from')

which allows relaying if the mail sender is listed as RELAY in the
access map. If an optional argument `domain' (this is the literal
word `domain', not a placeholder) is given, the domain portion of
the mail sender is also checked to allowing relaying. This option
only works together with the tag From: for the LHS of the access
map entries. This feature allows spammers to abuse your mail server
by specifying a return address that you enabled in your access file.
This may be harder to figure out for spammers, but it should not
be used unless necessary. Instead use SMTP AUTH or STARTTLS to
allow relaying for roaming users.

If source routing is used in the recipient address (e.g.,
RCPT TO:<user%site.com@othersite.com>), sendmail will check
user@site.com for relaying if othersite.com is an allowed relay host
in either class {R}, class {m} if FEATURE(`relay_entire_domain') is
used,
or the access database if FEATURE(`access_db') is used. To prevent
the address from being stripped down, use:

 FEATURE(`loose_relay_check')

If you think you need to use this feature, you probably do not. This
should only be used for sites which have no control over the addresses
that they provide a gateway for. Use this FEATURE with caution as it
can allow spammers to relay through your server if not setup properly.

NOTICE: It is possible to relay mail through a system which the anti-
relay
rules do not prevent: the case of a system that does use
FEATURE(`nouucp',
`nospecial') (system A) and relays local messages to a mail hub (e.g.,
via
LOCAL_RELAY or LUSER_RELAY) (system B). If system B doesn't use
FEATURE(`nouucp') at all, addresses of the form

<example.net!user@local.host> would be relayed to
<user@example.net>.
System A doesn't recognize `!' as an address separator and therefore
forwards it to the mail hub which in turns relays it because it came
from
a trusted local host. So if a mailserver allows UUCP (bang-format)
addresses, all systems from which it allows relaying should do the same
or reject those addresses.

As of 8.9, sendmail will refuse mail if the MAIL FROM: parameter has
an unresolvable domain (i.e., one that DNS, your local name service,
or special case rules in ruleset 3 cannot locate). This also applies
to addresses that use domain literals, e.g., <user@[1.2.3.4]>, if
the
IP address can't be mapped to a host name. If you want to continue
to accept such domains, e.g., because you are inside a firewall that
has only a limited view of the Internet host name space (note that you
will not be able to return mail to them unless you have some
"smart
host" forwarder), use

 FEATURE(`accept_unresolvable_domains')

Alternatively, you can allow specific addresses by adding them to
the access map, e.g.,

 From:unresolvable.domain OK
 From:[1.2.3.4] OK
 From:[1.2.4] OK

Notice: domains which are temporarily unresolvable are (temporarily)
rejected with a 451 reply code. If those domains should be accepted
(which is discouraged) then you can use

 LOCAL_CONFIG
 C{ResOk}TEMP

sendmail will also refuse mail if the MAIL FROM: parameter is not
fully qualified (i.e., contains a domain as well as a user). If you
want to continue to accept such senders, use

 FEATURE(`accept_unqualified_senders')

Setting the DaemonPortOptions modifier 'u' overrides the default
behavior,
i.e., unqualified addresses are accepted even without this FEATURE. If
this FEATURE is not used, the DaemonPortOptions modifier 'f' can be
used
to enforce fully qualified domain names.

An ``access'' database can be created to accept or reject mail from
selected domains. For example, you may choose to reject all mail
originating from known spammers. To enable such a database, use

 FEATURE(`access_db')

Notice: the access database is applied to the envelope addresses
and the connection information, not to the header.

The FEATURE macro can accept as second parameter the key file
definition for the database; for example

 FEATURE(`access_db', `hash -T<TMPF> /etc/mail/access_map')

Notice: If a second argument is specified it must contain the option
`-T<TMPF>' as shown above. The optional third and fourth
parameters
may be `skip' or `lookupdotdomain'. The former enables SKIP as
value part (see below), the latter is another way to enable the
feature of the same name (see above).

Remember, since /etc/mail/access is a database, after creating the text
file as described below, you must use makemap to create the database
map. For example:

 makemap hash /etc/mail/access < /etc/mail/access

The table itself uses e-mail addresses, domain names, and network
numbers as keys. Note that IPv6 addresses must be prefaced with
"IPv6:".
For example,

 From:spammer@aol.com REJECT
 From:cyberspammer.com REJECT
 Connect:cyberspammer.com REJECT
 Connect:TLD REJECT
 Connect:192.168.212 REJECT
 Connect:IPv6:2002:c0a8:02c7 RELAY
 Connect:IPv6:2002:c0a8:51d2::23f4 REJECT

would refuse mail from spammer@aol.com, any user from cyberspammer.com

(or any host within the cyberspammer.com domain), any host in the
entire
top level domain TLD, 192.168.212.* network, and the IPv6 address
2002:c0a8:51d2::23f4. It would allow relay for the IPv6 network
2002:c0a8:02c7::/48.

Entries in the access map should be tagged according to their type.
Three tags are available:

 Connect: connection information (${client_addr},
${client_name})
 From: envelope sender
 To: envelope recipient

Notice: untagged entries are deprecated.

If the required item is looked up in a map, it will be tried first
with the corresponding tag in front, then (as fallback to enable
backward compatibility) without any tag, unless the specific feature
requires a tag. For example,

 From:spammer@some.dom REJECT
 To:friend.domain RELAY
 Connect:friend.domain OK
 Connect:from.domain RELAY
 From:good@another.dom OK
 From:another.dom REJECT

This would deny mails from spammer@some.dom but you could still
send mail to that address even if FEATURE(`blacklist_recipients')
is enabled. Your system will allow relaying to friend.domain, but
not from it (unless enabled by other means). Connections from that
domain will be allowed even if it ends up in one of the DNS based
rejection lists. Relaying is enabled from from.domain but not to
it (since relaying is based on the connection information for
outgoing relaying, the tag Connect: must be used; for incoming
relaying, which is based on the recipient address, To: must be
used). The last two entries allow mails from good@another.dom but
reject mail from all other addresses with another.dom as domain
part.

The value part of the map can contain:

 OK Accept mail even if other rules in the running
 ruleset would reject it, for example, if the domain
 name is unresolvable. "Accept" does not
mean
 "relay", but at most acceptance for local
 recipients. That is, OK allows less than RELAY.
 RELAY Accept mail addressed to the indicated domain or
 received from the indicated domain for relaying
 through your SMTP server. RELAY also serves as
 an implicit OK for the other checks.
 REJECT Reject the sender or recipient with a general
 purpose message.
 DISCARD Discard the message completely using the
 $#discard mailer. If it is used in check_compat,

 it affects only the designated recipient, not
 the whole message as it does in all other cases.
 This should only be used if really necessary.
 SKIP This can only be used for host/domain names
 and IP addresses/nets. It will abort the current
 search for this entry without accepting or rejecting
 it but causing the default action.
 ### any text where ### is an RFC 821 compliant error code
and
 "any text" is a message to return for the
command.
 The entire string should be quoted to avoid
 surprises:

 "### any text"

 Otherwise sendmail formats the text as email
 addresses, e.g., it may remove spaces.
 This type is deprecated, use one of the two
 ERROR: entries below instead.
 ERROR:### any text
 as above, but useful to mark error messages as such.
 If quotes need to be used to avoid modifications
 (see above), they should be placed like this:

 ERROR:"### any text"

 ERROR:D.S.N:### any text
 where D.S.N is an RFC 1893 compliant error code
 and the rest as above. If quotes need to be used
 to avoid modifications, they should be placed
 like this:

 ERROR:D.S.N:"### any text"

 QUARANTINE:any text
 Quarantine the message using the given text as the
 quarantining reason.

For example:

 From:cyberspammer.com ERROR:"550 We don't accept mail from
spammers"
 From:okay.cyberspammer.com OK
 Connect:sendmail.org RELAY
 To:sendmail.org RELAY
 Connect:128.32 RELAY
 Connect:128.32.2 SKIP
 Connect:IPv6:1:2:3:4:5:6:7 RELAY
 Connect:suspicious.example.com QUARANTINE:Mail from
suspicious host
 Connect:[127.0.0.3] OK
 Connect:[IPv6:1:2:3:4:5:6:7:8] OK

would accept mail from okay.cyberspammer.com, but would reject mail
from all other hosts at cyberspammer.com with the indicated message.
It would allow relaying mail from and to any hosts in the sendmail.org
domain, and allow relaying from the IPv6 1:2:3:4:5:6:7:* network

and from the 128.32.*.* network except for the 128.32.2.* network,
which shows how SKIP is useful to exempt subnets/subdomains. The
last two entries are for checks against ${client_name} if the IP
address doesn't resolve to a hostname (or is considered as "may be
forged"). That is, using square brackets means these are host
names, not network numbers.

Warning: if you change the RFC 821 compliant error code from the
default
value of 550, then you should probably also change the RFC 1893
compliant
error code to match it. For example, if you use

 To:user@example.com ERROR:450 mailbox full

the error returned would be "450 5.0.0 mailbox full" which is
wrong.
Use "ERROR:4.2.2:450 mailbox full" instead.

Note, UUCP users may need to add hostname.UUCP to the access database
or class {R}.

If you also use:

 FEATURE(`relay_hosts_only')

then the above example will allow relaying for sendmail.org, but not
hosts within the sendmail.org domain. Note that this will also require
hosts listed in class {R} to be fully qualified host names.

You can also use the access database to block sender addresses based on
the username portion of the address. For example:

 From:FREE.STEALTH.MAILER@ ERROR:550 Spam not accepted

Note that you must include the @ after the username to signify that
this database entry is for checking only the username portion of the
sender address.

If you use:

 FEATURE(`blacklist_recipients')

then you can add entries to the map for local users, hosts in your
domains, or addresses in your domain which should not receive mail:

 To:badlocaluser@ ERROR:550 Mailbox disabled for badlocaluser
 To:host.my.TLD ERROR:550 That host does not accept mail
 To:user@other.my.TLD ERROR:550 Mailbox disabled for this
recipient

This would prevent a recipient of badlocaluser in any of the local
domains (class {w}), any user at host.my.TLD, and the single address
user@other.my.TLD from receiving mail. Please note: a local username
must be now tagged with an @ (this is consistent with the check of
the sender address, and hence it is possible to distinguish between
hostnames and usernames). Enabling this feature will keep you from
sending mails to all addresses that have an error message or REJECT

as value part in the access map. Taking the example from above:

 spammer@aol.com REJECT
 cyberspammer.com REJECT

Mail can't be sent to spammer@aol.com or anyone at cyberspammer.com.
That's why tagged entries should be used.

There are several DNS based blacklists, the first of which was
the RBL (``Realtime Blackhole List'') run by the MAPS project,
see http://mail-abuse.org/. These are databases of spammers
maintained in DNS. To use such a database, specify

 FEATURE(`dnsbl')

This will cause sendmail to reject mail from any site in the original
Realtime Blackhole List database. This default DNS blacklist,
blackholes.mail-abuse.org, is a service offered by the Mail Abuse
Prevention System (MAPS). As of July 31, 2001, MAPS is a subscription
service, so using that network address won't work if you haven't
subscribed. Contact MAPS to subscribe (http://mail-abuse.org/).

You can specify an alternative RBL server to check by specifying an
argument to the FEATURE. The default error message is

 Rejected: IP-ADDRESS listed at SERVER

where IP-ADDRESS and SERVER are replaced by the appropriate
information. A second argument can be used to specify a different
text. By default, temporary lookup failures are ignored and hence
cause the connection not to be rejected by the DNS based rejection
list. This behavior can be changed by specifying a third argument,
which must be either `t' or a full error message. For example:

 FEATURE(`dnsbl', `dnsbl.example.com', `',
 `"451 Temporary lookup failure for "
$&{client_addr} " in dnsbl.example.com"')

If `t' is used, the error message is:

 451 Temporary lookup failure of IP-ADDRESS at SERVER

where IP-ADDRESS and SERVER are replaced by the appropriate
information.

This FEATURE can be included several times to query different
DNS based rejection lists, e.g., the dial-up user list (see
http://mail-abuse.org/dul/).

Notice: to avoid checking your own local domains against those
blacklists, use the access_db feature and add:

 Connect:10.1 OK
 Connect:127.0.0.1 RELAY

to the access map, where 10.1 is your local network. You may
want to use "RELAY" instead of "OK" to allow also
relaying

instead of just disabling the DNS lookups in the blacklists.

The features described above make use of the check_relay, check_mail,
and check_rcpt rulesets. Note that check_relay checks the SMTP
client hostname and IP address when the connection is made to your
server. It does not check if a mail message is being relayed to
another server. That check is done in check_rcpt. If you wish to
include your own checks, you can put your checks in the rulesets
Local_check_relay, Local_check_mail, and Local_check_rcpt. For
example if you wanted to block senders with all numeric usernames
(i.e. 2312343@bigisp.com), you would use Local_check_mail and the
regex map:

 LOCAL_CONFIG
 Kallnumbers regex -a@MATCH ^[0-9]+$

 LOCAL_RULESETS
 SLocal_check_mail
 # check address against various regex checks
 R$* $: $>Parse0 $>3 $1
 R$+ < @ bigisp.com. > $* $: $(allnumbers $1 $)
 R@MATCH $#error $: 553 Header Error

These rules are called with the original arguments of the corresponding
check_* ruleset. If the local ruleset returns $#OK, no further
checking
is done by the features described above and the mail is accepted. If
the local ruleset resolves to a mailer (such as $#error or $#discard),
the appropriate action is taken. Other results starting with $# are
interpreted by sendmail and may lead to unspecified behavior. Note: do
NOT create a mailer with the name OK. Return values that do not start
with $# are ignored, i.e., normal processing continues.

Delay all checks

By using FEATURE(`delay_checks') the rulesets check_mail and
check_relay
will not be called when a client connects or issues a MAIL command,
respectively. Instead, those rulesets will be called by the check_rcpt
ruleset; they will be skipped if a sender has been authenticated using
a "trusted" mechanism, i.e., one that is defined via
TRUST_AUTH_MECH().
If check_mail returns an error then the RCPT TO command will be
rejected
with that error. If it returns some other result starting with $# then
check_relay will be skipped. If the sender address (or a part of it)
is
listed in the access map and it has a RHS of OK or RELAY, then
check_relay
will be skipped. This has an interesting side effect: if your domain
is
my.domain and you have

 my.domain RELAY

in the access map, then any e-mail with a sender address of

<user@my.domain> will not be rejected by check_relay even though
it would match the hostname or IP address. This allows spammers
to get around DNS based blacklist by faking the sender address. To
avoid this problem you have to use tagged entries:

 To:my.domain RELAY
 Connect:my.domain RELAY

if you need those entries at all (class {R} may take care of them).

FEATURE(`delay_checks') can take an optional argument:

 FEATURE(`delay_checks', `friend')
 enables spamfriend test
 FEATURE(`delay_checks', `hater')
 enables spamhater test

If such an argument is given, the recipient will be looked up in the
access map (using the tag Spam:). If the argument is `friend', then
the default behavior is to apply the other rulesets and make a SPAM
friend the exception. The rulesets check_mail and check_relay will be
skipped only if the recipient address is found and has RHS FRIEND. If
the argument is `hater', then the default behavior is to skip the
rulesets
check_mail and check_relay and make a SPAM hater the exception. The
other two rulesets will be applied only if the recipient address is
found and has RHS HATER.

This allows for simple exceptions from the tests, e.g., by activating
the friend option and having

 Spam:abuse@ FRIEND

in the access map, mail to abuse@localdomain will get through (where
"localdomain" is any domain in class {w}). It is also
possible to
specify a full address or an address with +detail:

 Spam:abuse@my.domain FRIEND
 Spam:me+abuse@ FRIEND
 Spam:spam.domain FRIEND

Note: The required tag has been changed in 8.12 from To: to Spam:.
This change is incompatible to previous versions. However, you can
(for now) simply add the new entries to the access map, the old
ones will be ignored. As soon as you removed the old entries from
the access map, specify a third parameter (`n') to this feature and
the backward compatibility rules will not be in the generated .cf
file.

Header Checks

You can also reject mail on the basis of the contents of headers.
This is done by adding a ruleset call to the 'H' header definition
command
in sendmail.cf. For example, this can be used to check the validity of

a Message-ID: header:

 LOCAL_CONFIG
 HMessage-Id: $>CheckMessageId

 LOCAL_RULESETS
 SCheckMessageId
 R< $+ @ $+ > $@ OK
 R$* $#error $: 553 Header Error

The alternative format:

 HSubject: $>+CheckSubject

that is, $>+ instead of $>, gives the full Subject: header
including
comments to the ruleset (comments in parentheses () are stripped
by default).

A default ruleset for headers which don't have a specific ruleset
defined for them can be given by:

 H*: $>CheckHdr

Notice:
1. All rules act on tokens as explained in doc/op/op.{me,ps,txt}.
That may cause problems with simple header checks due to the
tokenization. It might be simpler to use a regex map and apply it
to $&{currHeader}.
2. There are no default rulesets coming with this distribution of
sendmail. You can write your own, can search the WWW for examples,
or take a look at cf/cf/knecht.mc.
3. When using a default ruleset for headers, the name of the header
currently being checked can be found in the $&{hdr_name} macro.

After all of the headers are read, the check_eoh ruleset will be called
for
any final header-related checks. The ruleset is called with the number
of
headers and the size of all of the headers in bytes separated by $|.
One
example usage is to reject messages which do not have a Message-Id:
header. However, the Message-Id: header is *NOT* a required header and
is
not a guaranteed spam indicator. This ruleset is an example and should
probably not be used in production.

 LOCAL_CONFIG
 Kstorage macro
 HMessage-Id: $>CheckMessageId

 LOCAL_RULESETS
 SCheckMessageId
 # Record the presence of the header
 R$* $: $(storage {MessageIdCheck} $@ OK $) $1
 R< $+ @ $+ > $@ OK
 R$* $#error $: 553 Header Error

 Scheck_eoh
 # Check the macro
 R$* $: < $&{MessageIdCheck} >

 # Clear the macro for the next message
 R$* $: $(storage {MessageIdCheck} $) $1
 # Has a Message-Id: header
 R< $+ > $@ OK
 # Allow missing Message-Id: from local mail
 R$* $: < $&{client_name} >
 R< > $@ OK
 R< $=w > $@ OK
 # Otherwise, reject the mail
 R$* $#error $: 553 Header Error

+--------------------+
| CONNECTION CONTROL |
+--------------------+

The features ratecontrol and conncontrol allow to establish connection
limits per client IP address or net. These features can limit the
rate of connections (connections per time unit) or the number of
incoming SMTP connections, respectively. If enabled, appropriate
rulesets are called at the end of check_relay, i.e., after DNS
blacklists and generic access_db operations. The features require
FEATURE(`access_db') to be listed earlier in the mc file.

Note: FEATURE(`delay_checks') delays those connection control checks
after a recipient address has been received, hence making these
connection control features less useful. To run the checks as early
as possible, specify the parameter `nodelay', e.g.,

 FEATURE(`ratecontrol', `nodelay')

In that case, FEATURE(`delay_checks') has no effect on connection
control (and it must be specified earlier in the mc file).

An optional second argument `terminate' specifies whether the
rulesets should return the error code 421 which will cause
sendmail to terminate the session with that error if it is
returned from check_relay, i.e., not delayed as explained in
the previous paragraph. Example:

 FEATURE(`ratecontrol', `nodelay', `terminate')

+----------+
| STARTTLS |
+----------+

In this text, cert will be used as an abbreviation for X.509
certificate,
DN (CN) is the distinguished (common) name of a cert, and CA is a
certification authority, which signs (issues) certs.

For STARTTLS to be offered by sendmail you need to set at least
these variables (the file names and paths are just examples):

 define(`confCACERT_PATH', `/etc/mail/certs/')
 define(`confCACERT', `/etc/mail/certs/CA.cert.pem')
 define(`confSERVER_CERT', `/etc/mail/certs/my.cert.pem')
 define(`confSERVER_KEY', `/etc/mail/certs/my.key.pem')

On systems which do not have the compile flag HASURANDOM set (see
sendmail/README) you also must set confRAND_FILE.

See doc/op/op.{me,ps,txt} for more information about these options,
especially the sections ``Certificates for STARTTLS'' and ``PRNG for
STARTTLS''.

Macros related to STARTTLS are:

${cert_issuer} holds the DN of the CA (the cert issuer).
${cert_subject} holds the DN of the cert (called the cert subject).
${cn_issuer} holds the CN of the CA (the cert issuer).
${cn_subject} holds the CN of the cert (called the cert subject).
${tls_version} the TLS/SSL version used for the connection, e.g.,
TLSv1,
 TLSv1/SSLv3, SSLv3, SSLv2.
${cipher} the cipher used for the connection, e.g., EDH-DSS-DES-CBC3-
SHA,
 EDH-RSA-DES-CBC-SHA, DES-CBC-MD5, DES-CBC3-SHA.
${cipher_bits} the keylength (in bits) of the symmetric encryption
algorithm
 used for the connection.
${verify} holds the result of the verification of the presented cert.
 Possible values are:
 OK verification succeeded.
 NO no cert presented.
 NOT no cert requested.
 FAIL cert presented but could not be verified,
 e.g., the cert of the signing CA is missing.
 NONE STARTTLS has not been performed.
 TEMP temporary error occurred.
 PROTOCOL protocol error occurred (SMTP level).
 SOFTWARE STARTTLS handshake failed.
${server_name} the name of the server of the current outgoing SMTP
 connection.
${server_addr} the address of the server of the current outgoing SMTP
 connection.

Relaying

SMTP STARTTLS can allow relaying for remote SMTP clients which have
successfully authenticated themselves. If the verification of the cert
failed (${verify} != OK), relaying is subject to the usual rules.
Otherwise the DN of the issuer is looked up in the access map using the
tag CERTISSUER. If the resulting value is RELAY, relaying is allowed.
If it is SUBJECT, the DN of the cert subject is looked up next in the
access map using the tag CERTSUBJECT. If the value is RELAY, relaying
is allowed.

To make things a bit more flexible (or complicated), the values for

${cert_issuer} and ${cert_subject} can be optionally modified by
regular
expressions defined in the m4 variables _CERT_REGEX_ISSUER_ and
_CERT_REGEX_SUBJECT_, respectively. To avoid problems with those
macros in
rulesets and map lookups, they are modified as follows: each non-
printable
character and the characters '<', '>', '(', ')', '"', '+', '
' are replaced
by their HEX value with a leading '+'. For example:

/C=US/ST=California/O=endmail.org/OU=private/CN=Darth Mail
(Cert)/Email=
darth+cert@endmail.org

is encoded as:

/C=US/ST=California/O=endmail.org/OU=private/CN=
Darth+20Mail+20+28Cert+29/Email=darth+2Bcert@endmail.org

(line breaks have been inserted for readability).

The macros which are subject to this encoding are ${cert_subject},
${cert_issuer}, ${cn_subject}, and ${cn_issuer}.

Examples:

To allow relaying for everyone who can present a cert signed by

/C=US/ST=California/O=endmail.org/OU=private/CN=
Darth+20Mail+20+28Cert+29/Email=darth+2Bcert@endmail.org

simply use:

CertIssuer:/C=US/ST=California/O=endmail.org/OU=private/CN=
Darth+20Mail+20+28Cert+29/Email=darth+2Bcert@endmail.org RELAY

To allow relaying only for a subset of machines that have a cert signed
by

/C=US/ST=California/O=endmail.org/OU=private/CN=
Darth+20Mail+20+28Cert+29/Email=darth+2Bcert@endmail.org

use:

CertIssuer:/C=US/ST=California/O=endmail.org/OU=private/CN=
Darth+20Mail+20+28Cert+29/Email=darth+2Bcert@endmail.org SUBJECT
CertSubject:/C=US/ST=California/O=endmail.org/OU=private/CN=
DeathStar/Email=deathstar@endmail.org RELAY

Notes:
- line breaks have been inserted after "CN=" for readability,
 each tagged entry must be one (long) line in the access map.
- if OpenSSL 0.9.7 or newer is used then the "Email=" part of
a DN
 is replaced by "emailAddress=".

Of course it is also possible to write a simple ruleset that allows

relaying for everyone who can present a cert that can be verified,
e.g.,

LOCAL_RULESETS
SLocal_check_rcpt
R$* $: $&{verify}
ROK $# OK

Allowing Connections

The rulesets tls_server, tls_client, and tls_rcpt are used to decide
whether
an SMTP connection is accepted (or should continue).

tls_server is called when sendmail acts as client after a STARTTLS
command
(should) have been issued. The parameter is the value of ${verify}.

tls_client is called when sendmail acts as server, after a STARTTLS
command
has been issued, and from check_mail. The parameter is the value of
${verify} and STARTTLS or MAIL, respectively.

Both rulesets behave the same. If no access map is in use, the
connection
will be accepted unless ${verify} is SOFTWARE, in which case the
connection
is always aborted. For tls_server/tls_client,
${client_name}/${server_name}
is looked up in the access map using the tag TLS_Srv/TLS_Clt, which is
done
with the ruleset LookUpDomain. If no entry is found, ${client_addr}
(${server_addr}) is looked up in the access map (same tag, ruleset
LookUpAddr). If this doesn't result in an entry either, just the tag
is
looked up in the access map (included the trailing colon). Notice:
requiring that e-mail is sent to a server only encrypted, e.g., via

TLS_Srv:secure.domain ENCR:112

doesn't necessarily mean that e-mail sent to that domain is encrypted.
If the domain has multiple MX servers, e.g.,

secure.domain. IN MX 10 mail.secure.domain.
secure.domain. IN MX 50 mail.other.domain.

then mail to user@secure.domain may go unencrypted to
mail.other.domain.
tls_rcpt can be used to address this problem.

tls_rcpt is called before a RCPT TO: command is sent. The parameter is
the
current recipient. This ruleset is only defined if
FEATURE(`access_db')
is selected. A recipient address user@domain is looked up in the
access

map in four formats: TLS_Rcpt:user@domain, TLS_Rcpt:user@,
TLS_Rcpt:domain,
and TLS_Rcpt:; the first match is taken.

The result of the lookups is then used to call the ruleset
TLS_connection,
which checks the requirement specified by the RHS in the access map
against
the actual parameters of the current TLS connection, esp. ${verify} and
${cipher_bits}. Legal RHSs in the access map are:

VERIFY verification must have succeeded
VERIFY:bits verification must have succeeded and ${cipher_bits} must
 be greater than or equal bits.
ENCR:bits ${cipher_bits} must be greater than or equal bits.

The RHS can optionally be prefixed by TEMP+ or PERM+ to select a
temporary
or permanent error. The default is a temporary error code (403 4.7.0)
unless the macro TLS_PERM_ERR is set during generation of the .cf file.

If a certain level of encryption is required, then it might also be
possible that this level is provided by the security layer from a SASL
algorithm, e.g., DIGEST-MD5.

Furthermore, there can be a list of extensions added. Such a list
starts with '+' and the items are separated by '++'. Allowed
extensions are:

CN:name name must match ${cn_subject}
CN ${server_name} must match ${cn_subject}
CS:name name must match ${cert_subject}
CI:name name must match ${cert_issuer}

Example: e-mail sent to secure.example.com should only use an encrypted
connection. E-mail received from hosts within the laptop.example.com
domain
should only be accepted if they have been authenticated. The host
which
receives e-mail for darth@endmail.org must present a cert that uses the
CN smtp.endmail.org.

TLS_Srv:secure.example.com ENCR:112
TLS_Clt:laptop.example.com PERM+VERIFY:112
TLS_Rcpt:darth@endmail.org ENCR:112+CN:smtp.endmail.org

Disabling STARTTLS And Setting SMTP Server Features

By default STARTTLS is used whenever possible. However, there are
some broken MTAs that don't properly implement STARTTLS. To be able
to send to (or receive from) those MTAs, the ruleset try_tls
(srv_features) can be used that work together with the access map.
Entries for the access map must be tagged with Try_TLS (Srv_Features)
and refer to the hostname or IP address of the connecting system.
A default case can be specified by using just the tag. For example,
the following entries in the access map:

 Try_TLS:broken.server NO
 Srv_Features:my.domain v
 Srv_Features: V

will turn off STARTTLS when sending to broken.server (or any host
in that domain), and request a client certificate during the TLS
handshake only for hosts in my.domain. The valid entries on the RHS
for Srv_Features are listed in the Sendmail Installation and
Operations Guide.

Received: Header

The Received: header reveals whether STARTTLS has been used. It
contains an
extra line:

(version=${tls_version} cipher=${cipher} bits=${cipher_bits}
verify=${verify})

+---------------------+
| SMTP AUTHENTICATION |
+---------------------+

The macros ${auth_authen}, ${auth_author}, and ${auth_type} can be
used in anti-relay rulesets to allow relaying for those users that
authenticated themselves. A very simple example is:

SLocal_check_rcpt
R$* $: $&{auth_type}
R$+ $# OK

which checks whether a user has successfully authenticated using
any available mechanism. Depending on the setup of the Cyrus SASL
library, more sophisticated rulesets might be required, e.g.,

SLocal_check_rcpt
R$* $: $&{auth_type} $| $&{auth_authen}
RDIGEST-MD5 $| $+@$=w $# OK

to allow relaying for users that authenticated using DIGEST-MD5
and have an identity in the local domains.

The ruleset trust_auth is used to determine whether a given AUTH=
parameter (that is passed to this ruleset) should be trusted. This
ruleset may make use of the other ${auth_*} macros. Only if the
ruleset resolves to the error mailer, the AUTH= parameter is not
trusted. A user supplied ruleset Local_trust_auth can be written
to modify the default behavior, which only trust the AUTH=
parameter if it is identical to the authenticated user.

Per default, relaying is allowed for any user who authenticated
via a "trusted" mechanism, i.e., one that is defined via
TRUST_AUTH_MECH(`list of mechanisms')
For example:

TRUST_AUTH_MECH(`KERBEROS_V4 DIGEST-MD5')

If the selected mechanism provides a security layer the number of
bits used for the key of the symmetric cipher is stored in the
macro ${auth_ssf}.

Providing SMTP AUTH Data when sendmail acts as Client

If sendmail acts as client, it needs some information how to
authenticate against another MTA. This information can be provided
by the ruleset authinfo or by the option DefaultAuthInfo. The
authinfo ruleset looks up {server_name} using the tag AuthInfo: in
the access map. If no entry is found, {server_addr} is looked up
in the same way and finally just the tag AuthInfo: to provide
default values. Note: searches for domain parts or IP nets are
only performed if the access map is used; if the authinfo feature
is used then only up to three lookups are performed (two exact
matches, one default).

Note: If your daemon does client authentication when sending, and
if it uses either PLAIN or LOGIN authentication, then you *must*
prevent ordinary users from seeing verbose output. Do NOT install
sendmail set-user-ID. Use PrivacyOptions to turn off verbose output
("goaway" works for this).

Notice: the default configuration file causes the option
DefaultAuthInfo
to fail since the ruleset authinfo is in the .cf file. If you really
want to use DefaultAuthInfo (it is deprecated) then you have to
remove the ruleset.

The RHS for an AuthInfo: entry in the access map should consists of a
list of tokens, each of which has the form: "TDstring"
(including
the quotes). T is a tag which describes the item, D is a delimiter,
either ':' for simple text or '=' for a base64 encoded string.
Valid values for the tag are:

 U user (authorization) id
 I authentication id
 P password
 R realm
 M list of mechanisms delimited by spaces

Example entries are:

AuthInfo:other.dom "U:user" "I:user"
"P:secret" "R:other.dom" "M:DIGEST-MD5"

AuthInfo:host.more.dom "U:user" "P=c2VjcmV0"

User id or authentication id must exist as well as the password. All
other entries have default values. If one of user or authentication
id is missing, the existing value is used for the missing item.
If "R:" is not specified, realm defaults to $j. The list of
mechanisms
defaults to those specified by AuthMechanisms.

Since this map contains sensitive information, either the access
map must be unreadable by everyone but root (or the trusted user)
or FEATURE(`authinfo') must be used which provides a separate map.
Notice: It is not checked whether the map is actually
group/world-unreadable, this is left to the user.

+--------------------------------+
| ADDING NEW MAILERS OR RULESETS |
+--------------------------------+

Sometimes you may need to add entirely new mailers or rulesets. They
should be introduced with the constructs MAILER_DEFINITIONS and
LOCAL_RULESETS respectively. For example:

 MAILER_DEFINITIONS
 Mmymailer, ...
 ...

 LOCAL_RULESETS
 Smyruleset
 ...

Local additions for the rulesets srv_features, try_tls, tls_rcpt,
tls_client, and tls_server can be made using LOCAL_SRV_FEATURES,
LOCAL_TRY_TLS, LOCAL_TLS_RCPT, LOCAL_TLS_CLIENT, and LOCAL_TLS_SERVER,
respectively. For example, to add a local ruleset that decides
whether to try STARTTLS in a sendmail client, use:

 LOCAL_TRY_TLS
 R...

Note: you don't need to add a name for the ruleset, it is implicitly
defined by using the appropriate macro.

+-------------------------+
| ADDING NEW MAIL FILTERS |
+-------------------------+

Sendmail supports mail filters to filter incoming SMTP messages
according
to the "Sendmail Mail Filter API" documentation. These
filters can be
configured in your mc file using the two commands:

 MAIL_FILTER(`name', `equates')
 INPUT_MAIL_FILTER(`name', `equates')

The first command, MAIL_FILTER(), simply defines a filter with the
given
name and equates. For example:

 MAIL_FILTER(`archive', `S=local:/var/run/archivesock, F=R')

This creates the equivalent sendmail.cf entry:

 Xarchive, S=local:/var/run/archivesock, F=R

The INPUT_MAIL_FILTER() command performs the same actions as
MAIL_FILTER
but also populates the m4 variable `confINPUT_MAIL_FILTERS' with the
name
of the filter such that the filter will actually be called by sendmail.

For example, the two commands:

 INPUT_MAIL_FILTER(`archive', `S=local:/var/run/archivesock, F=R')
 INPUT_MAIL_FILTER(`spamcheck', `S=inet:2525@localhost, F=T')

are equivalent to the three commands:

 MAIL_FILTER(`archive', `S=local:/var/run/archivesock, F=R')
 MAIL_FILTER(`spamcheck', `S=inet:2525@localhost, F=T')
 define(`confINPUT_MAIL_FILTERS', `archive, spamcheck')

In general, INPUT_MAIL_FILTER() should be used unless you need to
define
more filters than you want to use for `confINPUT_MAIL_FILTERS'.

Note that setting `confINPUT_MAIL_FILTERS' after any
INPUT_MAIL_FILTER()
commands will clear the list created by the prior INPUT_MAIL_FILTER()
commands.

+-------------------------+
| QUEUE GROUP DEFINITIONS |
+-------------------------+

In addition to the queue directory (which is the default queue group
called "mqueue"), sendmail can deal with multiple queue
groups, which
are collections of queue directories with the same behaviour. Queue
groups can be defined using the command:

 QUEUE_GROUP(`name', `equates')

For details about queue groups, please see doc/op/op.{me,ps,txt}.

+-------------------------------+
| NON-SMTP BASED CONFIGURATIONS |
+-------------------------------+

These configuration files are designed primarily for use by
SMTP-based sites. They may not be well tuned for UUCP-only or
UUCP-primarily nodes (the latter is defined as a small local net
connected to the rest of the world via UUCP). However, there is
one hook to handle some special cases.

You can define a ``smart host'' that understands a richer address
syntax
using:

 define(`SMART_HOST', `mailer:hostname')

In this case, the ``mailer:'' defaults to "relay". Any
messages that
can't be handled using the usual UUCP rules are passed to this host.

If you are on a local SMTP-based net that connects to the outside
world via UUCP, you can use LOCAL_NET_CONFIG to add appropriate rules.
For example:

 define(`SMART_HOST', `uucp-new:uunet')
 LOCAL_NET_CONFIG
 R$* < @ $* .$m. > $* $#smtp $@ $2.$m. $: $1 < @
$2.$m. > $3

This will cause all names that end in your domain name ($m) to be sent
via SMTP; anything else will be sent via uucp-new (smart UUCP) to
uunet.
If you have FEATURE(`nocanonify'), you may need to omit the dots after
the $m. If you are running a local DNS inside your domain which is
not otherwise connected to the outside world, you probably want to
use:

 define(`SMART_HOST', `smtp:fire.wall.com')
 LOCAL_NET_CONFIG
 R$* < @ $* . > $* $#smtp $@ $2. $: $1 < @ $2. > $3

That is, send directly only to things you found in your DNS lookup;
anything else goes through SMART_HOST.

You may need to turn off the anti-spam rules in order to accept
UUCP mail with FEATURE(`promiscuous_relay') and
FEATURE(`accept_unresolvable_domains').

+-----------+
| WHO AM I? |
+-----------+

Normally, the $j macro is automatically defined to be your fully
qualified domain name (FQDN). Sendmail does this by getting your
host name using gethostname and then calling gethostbyname on the
result. For example, in some environments gethostname returns
only the root of the host name (such as "foo"); gethostbyname
is
supposed to return the FQDN ("foo.bar.com"). In some (fairly
rare)
cases, gethostbyname may fail to return the FQDN. In this case
you MUST define confDOMAIN_NAME to be your fully qualified domain
name. This is usually done using:

 Dmbar.com
 define(`confDOMAIN_NAME', `$w.$m')dnl

+-----------------------------------+
| ACCEPTING MAIL FOR MULTIPLE NAMES |
+-----------------------------------+

If your host is known by several different names, you need to augment

class {w}. This is a list of names by which your host is known, and
anything sent to an address using a host name in this list will be
treated as local mail. You can do this in two ways: either create the
file /etc/mail/local-host-names containing a list of your aliases (one
per
line), and use ``FEATURE(`use_cw_file')'' in the .mc file, or add
``LOCAL_DOMAIN(`alias.host.name')''. Be sure you use the fully-
qualified
name of the host, rather than a short name.

If you want to have different address in different domains, take
a look at the virtusertable feature, which is also explained at
http://www.sendmail.org/virtual-hosting.html

+--------------------+
| USING MAILERTABLES |
+--------------------+

To use FEATURE(`mailertable'), you will have to create an external
database containing the routing information for various domains.
For example, a mailertable file in text format might be:

 .my.domain xnet:%1.my.domain
 uuhost1.my.domain uucp-new:uuhost1
 .bitnet smtp:relay.bit.net

This should normally be stored in /etc/mail/mailertable. The actual
database version of the mailertable is built using:

 makemap hash /etc/mail/mailertable < /etc/mail/mailertable

The semantics are simple. Any LHS entry that does not begin with
a dot matches the full host name indicated. LHS entries beginning
with a dot match anything ending with that domain name (including
the leading dot) -- that is, they can be thought of as having a
leading ".+" regular expression pattern for a non-empty
sequence of
characters. Matching is done in order of most-to-least qualified
-- for example, even though ".my.domain" is listed first in
the
above example, an entry of "uuhost1.my.domain" will match the
second
entry since it is more explicit. Note: e-mail to
"user@my.domain"

does not match any entry in the above table. You need to have
something like:

 my.domain esmtp:host.my.domain

The RHS should always be a "mailer:host" pair. The mailer is
the
configuration name of a mailer (that is, an M line in the
sendmail.cf file). The "host" will be the hostname passed to
that mailer. In domain-based matches (that is, those with leading
dots) the "%1" may be used to interpolate the wildcarded part
of

the host name. For example, the first line above sends everything
addressed to "anything.my.domain" to that same host name, but
using
the (presumably experimental) xnet mailer.

In some cases you may want to temporarily turn off MX records,
particularly on gateways. For example, you may want to MX
everything in a domain to one machine that then forwards it
directly. To do this, you might use the DNS configuration:

 *.domain. IN MX 0 relay.machine

and on relay.machine use the mailertable:

 .domain smtp:[gateway.domain]

The [square brackets] turn off MX records for this host only.
If you didn't do this, the mailertable would use the MX record
again, which would give you an MX loop. Note that the use of
wildcard MX records is almost always a bad idea. Please avoid
using them if possible.

+--------------------------------+
| USING USERDB TO MAP FULL NAMES |
+--------------------------------+

The user database was not originally intended for mapping full names
to login names (e.g., Eric.Allman => eric), but some people are
using
it that way. (it is recommended that you set up aliases for this
purpose instead -- since you can specify multiple alias files, this
is fairly easy.) The intent was to locate the default maildrop at
a site, but allow you to override this by sending to a specific host.

If you decide to set up the user database in this fashion, it is
imperative that you not use FEATURE(`stickyhost') -- otherwise,
e-mail sent to Full.Name@local.host.name will be rejected.

To build the internal form of the user database, use:

 makemap btree /etc/mail/userdb < /etc/mail/userdb.txt

As a general rule, it is an extremely bad idea to using full names
as e-mail addresses, since they are not in any sense unique. For
example, the UNIX software-development community has at least two
well-known Peter Deutsches, and at one time Bell Labs had two
Stephen R. Bournes with offices along the same hallway. Which one
will be forced to suffer the indignity of being Stephen_R_Bourne_2?
The less famous of the two, or the one that was hired later?

Finger should handle full names (and be fuzzy). Mail should use
handles, and not be fuzzy.

+--------------------------------+
| MISCELLANEOUS SPECIAL FEATURES |
+--------------------------------+

Plussed users
 Sometimes it is convenient to merge configuration on a
 centralized mail machine, for example, to forward all
 root mail to a mail server. In this case it might be
 useful to be able to treat the root addresses as a class
 of addresses with subtle differences. You can do this
 using plussed users. For example, a client might include
 the alias:

 root: root+client1@server

 On the server, this will match an alias for
"root+client1".
 If that is not found, the alias "root+*" will be tried,
 then "root".

+----------------+
| SECURITY NOTES |
+----------------+

A lot of sendmail security comes down to you. Sendmail 8 is much
more careful about checking for security problems than previous
versions, but there are some things that you still need to watch
for. In particular:

* Make sure the aliases file is not writable except by trusted
 system personnel. This includes both the text and database
 version.

* Make sure that other files that sendmail reads, such as the
 mailertable, are only writable by trusted system personnel.

* The queue directory should not be world writable PARTICULARLY
 if your system allows "file giveaways" (that is, if a non-
root
 user can chown any file they own to any other user).

* If your system allows file giveaways, DO NOT create a publically
 writable directory for forward files. This will allow anyone
 to steal anyone else's e-mail. Instead, create a script that
 copies the .forward file from users' home directories once a
 night (if you want the non-NFS-mounted forward directory).

* If your system allows file giveaways, you'll find that
 sendmail is much less trusting of :include: files -- in
 particular, you'll have to have /SENDMAIL/ANY/SHELL/ in
 /etc/shells before they will be trusted (that is, before
 files and programs listed in them will be honored).

In general, file giveaways are a mistake -- if you can turn them
off, do so.

+--------------------------------+
| TWEAKING CONFIGURATION OPTIONS |
+--------------------------------+

There are a large number of configuration options that don't normally
need to be changed. However, if you feel you need to tweak them,
you can define the following M4 variables. Note that some of these
variables require formats that are defined in RFC 2821 or RFC 2822.
Before changing them you need to make sure you do not violate those
(and other relevant) RFCs.

This list is shown in four columns: the name you define, the default
value for that definition, the option or macro that is affected
(either Ox for an option or Dx for a macro), and a brief description.
Greater detail of the semantics can be found in the Installation
and Operations Guide.

Some options are likely to be deprecated in future versions -- that is,
the option is only included to provide back-compatibility. These are
marked with "*".

Remember that these options are M4 variables, and hence may need to
be quoted. In particular, arguments with commas will usually have to
be ``double quoted, like this phrase'' to avoid having the comma
confuse things. This is common for alias file definitions and for
the read timeout.

M4 Variable Name Configuration [Default] & Description
================ ============= =======================
confMAILER_NAME $n macro [MAILER-DAEMON] The sender name
used
 for internally generated outgoing
 messages.
confDOMAIN_NAME $j macro If defined, sets $j. This should
 only be done if your system cannot
 determine your local domain name,
 and then it should be set to
 $w.Foo.COM, where Foo.COM is your
 domain name.
confCF_VERSION $Z macro If defined, this is appended to the
 configuration version name.
confLDAP_CLUSTER ${sendmailMTACluster} macro
 If defined, this is the LDAP
 cluster to use for LDAP searches
 as described above in ``USING LDAP
 FOR ALIASES, MAPS, AND CLASSES''.
confFROM_HEADER From: [$?x$x <$g>$|g.] The format
of an
 internally generated From: address.
confRECEIVED_HEADER Received:
 [$?sfrom $s $.$?_($?s$|from $.$_)
 $.$?{auth_type}(authenticated)
 $.by $j ($v/$Z)$?r with r. id i?u
 for $u; $|;
 $.$b]
 The format of the Received: header
 in messages passed through this host.
 It is unwise to try to change this.
confMESSAGEID_HEADER Message-Id: [<$t.$i@$j>] The format of an
 internally generated Message-Id:
 header.

confCW_FILE Fw class [/etc/mail/local-host-names] Name
 of file used to get the local
 additions to class {w} (local host
 names).
confCT_FILE Ft class [/etc/mail/trusted-users] Name of
 file used to get the local additions
 to class {t} (trusted users).
confCR_FILE FR class [/etc/mail/relay-domains] Name of
 file used to get the local additions
 to class {R} (hosts allowed to relay).
confTRUSTED_USERS Ct class [no default] Names of users to add to
 the list of trusted users. This list
 always includes root, uucp, and daemon.
 See also FEATURE(`use_ct_file').
confTRUSTED_USER TrustedUser [no default] Trusted user for file
 ownership and starting the daemon.
 Not to be confused with
 confTRUSTED_USERS (see above).
confSMTP_MAILER - [esmtp] The mailer name used when
 SMTP connectivity is required.
 One of "smtp",
"smtp8",
 "esmtp", or "dsmtp".
confUUCP_MAILER - [uucp-old] The mailer to be used by
 default for bang-format recipient
 addresses. See also discussion of
 class {U}, class {Y}, and class {Z}
 in the MAILER(`uucp') section.
confLOCAL_MAILER - [local] The mailer name used when
 local connectivity is required.
 Almost always "local".
confRELAY_MAILER - [relay] The default mailer name used
 for relaying any mail (e.g., to a
 BITNET_RELAY, a SMART_HOST, or
 whatever). This can reasonably be
 "uucp-new" if you are on a
 UUCP-connected site.
confSEVEN_BIT_INPUT SevenBitInput [False] Force input to seven
bits?
confEIGHT_BIT_HANDLING EightBitMode [pass8] 8-bit data handling
confALIAS_WAIT AliasWait [10m] Time to wait for alias file
 rebuild until you get bored and
 decide that the apparently pending
 rebuild failed.
confMIN_FREE_BLOCKS MinFreeBlocks [100] Minimum number of free
blocks on
 queue filesystem to accept SMTP mail.
 (Prior to 8.7 this was minfree/maxsize,
 where minfree was the number of free
 blocks and maxsize was the maximum
 message size. Use confMAX_MESSAGE_SIZE
 for the second value now.)
confMAX_MESSAGE_SIZE MaxMessageSize [infinite] The maximum size
of messages
 that will be accepted (in bytes).
confBLANK_SUB BlankSub [.] Blank (space) substitution
 character.

confCON_EXPENSIVE HoldExpensive [False] Avoid connecting
immediately
 to mailers marked expensive.
confCHECKPOINT_INTERVAL CheckpointInterval
 [10] Checkpoint queue files every N
 recipients.
confDELIVERY_MODE DeliveryMode [background] Default delivery mode.
confERROR_MODE ErrorMode [print] Error message mode.
confERROR_MESSAGE ErrorHeader [undefined] Error message header/file.
confSAVE_FROM_LINES SaveFromLine Save extra leading From_
lines.
confTEMP_FILE_MODE TempFileMode [0600] Temporary file mode.
confMATCH_GECOS MatchGECOS [False] Match GECOS field.
confMAX_HOP MaxHopCount [25] Maximum hop count.
confIGNORE_DOTS* IgnoreDots [False; always False in -bs or -bd
 mode] Ignore dot as terminator for
 incoming messages?
confBIND_OPTS ResolverOptions [undefined] Default options
for DNS
 resolver.
confMIME_FORMAT_ERRORS* SendMimeErrors [True] Send error messages as
MIME-
 encapsulated messages per RFC 1344.
confFORWARD_PATH ForwardPath [$z/.forward.$w:$z/.forward]
 The colon-separated list of places to
 search for .forward files. N.B.: see
 the Security Notes section.
confMCI_CACHE_SIZE ConnectionCacheSize
 [2] Size of open connection cache.
confMCI_CACHE_TIMEOUT ConnectionCacheTimeout
 [5m] Open connection cache timeout.
confHOST_STATUS_DIRECTORY HostStatusDirectory
 [undefined] If set, host status is kept
 on disk between sendmail runs in the
 named directory tree. This need not be
 a full pathname, in which case it is
 interpreted relative to the queue
 directory.
confSINGLE_THREAD_DELIVERY SingleThreadDelivery
 [False] If this option and the
 HostStatusDirectory option are both
 set, single thread deliveries to other
 hosts. That is, don't allow any two
 sendmails on this host to connect
 simultaneously to any other single
 host. This can slow down delivery in
 some cases, in particular since a
 cached but otherwise idle connection
 to a host will prevent other sendmails
 from connecting to the other host.
confUSE_ERRORS_TO* UseErrorsTo [False] Use the Errors-To: header
to
 deliver error messages. This should
 not be necessary because of general
 acceptance of the envelope/header
 distinction.
confLOG_LEVEL LogLevel [9] Log level.
confME_TOO MeToo [True] Include sender in group

 expansions. This option is
 deprecated and will be removed from
 a future version.
confCHECK_ALIASES CheckAliases [False] Check RHS of aliases when
 running newaliases. Since this does
 DNS lookups on every address, it can
 slow down the alias rebuild process
 considerably on large alias files.
confOLD_STYLE_HEADERS* OldStyleHeaders [True] Assume that headers
without
 special chars are old style.
confPRIVACY_FLAGS PrivacyOptions [authwarnings] Privacy flags.
confCOPY_ERRORS_TO PostmasterCopy [undefined] Address for
additional
 copies of all error messages.
confQUEUE_FACTOR QueueFactor [600000] Slope of queue-only function.
confQUEUE_FILE_MODE QueueFileMode [undefined] Default
permissions for
 queue files (octal). If not set,
 sendmail uses 0600 unless its real
 and effective uid are different in
 which case it uses 0644.
confDONT_PRUNE_ROUTES DontPruneRoutes [False] Don't prune down
route-addr
 syntax addresses to the minimum
 possible.
confSAFE_QUEUE* SuperSafe [True] Commit all messages to disk
 before forking.
confTO_INITIAL Timeout.initial [5m] The timeout waiting for
a response
 on the initial connect.
confTO_CONNECT Timeout.connect [0] The timeout waiting for
an initial
 connect() to complete. This can only
 shorten connection timeouts; the kernel
 silently enforces an absolute maximum
 (which varies depending on the system).
confTO_ICONNECT Timeout.iconnect
 [undefined] Like Timeout.connect, but
 applies only to the very first attempt
 to connect to a host in a message.
 This allows a single very fast pass
 followed by more careful delivery
 attempts in the future.
confTO_ACONNECT Timeout.aconnect
 [0] The overall timeout waiting for
 all connection for a single delivery
 attempt to succeed. If 0, no overall
 limit is applied.
confTO_HELO Timeout.helo [5m] The timeout waiting for a
response
 to a HELO or EHLO command.
confTO_MAIL Timeout.mail [10m] The timeout waiting for a
 response to the MAIL command.
confTO_RCPT Timeout.rcpt [1h] The timeout waiting for a
response
 to the RCPT command.
confTO_DATAINIT Timeout.datainit

 [5m] The timeout waiting for a 354
 response from the DATA command.
confTO_DATABLOCK Timeout.datablock
 [1h] The timeout waiting for a block
 during DATA phase.
confTO_DATAFINAL Timeout.datafinal
 [1h] The timeout waiting for a response
 to the final "." that
terminates a
 message.
confTO_RSET Timeout.rset [5m] The timeout waiting for a
response
 to the RSET command.
confTO_QUIT Timeout.quit [2m] The timeout waiting for a
response
 to the QUIT command.
confTO_MISC Timeout.misc [2m] The timeout waiting for a
response
 to other SMTP commands.
confTO_COMMAND Timeout.command [1h] In server SMTP, the
timeout
 waiting for a command to be issued.
confTO_IDENT Timeout.ident [5s] The timeout waiting for
a
 response to an IDENT query.
confTO_FILEOPEN Timeout.fileopen
 [60s] The timeout waiting for a file
 (e.g., :include: file) to be opened.
confTO_LHLO Timeout.lhlo [2m] The timeout waiting for a
response
 to an LMTP LHLO command.
confTO_AUTH Timeout.auth [10m] The timeout waiting for a
 response in an AUTH dialogue.
confTO_STARTTLS Timeout.starttls
 [1h] The timeout waiting for a
 response to an SMTP STARTTLS command.
confTO_CONTROL Timeout.control
 [2m] The timeout for a complete
 control socket transaction to complete.
confTO_QUEUERETURN Timeout.queuereturn
 [5d] The timeout before a message is
 returned as undeliverable.
confTO_QUEUERETURN_NORMAL
 Timeout.queuereturn.normal
 [undefined] As above, for normal
 priority messages.
confTO_QUEUERETURN_URGENT
 Timeout.queuereturn.urgent
 [undefined] As above, for urgent
 priority messages.
confTO_QUEUERETURN_NONURGENT
 Timeout.queuereturn.non-urgent
 [undefined] As above, for non-urgent
 (low) priority messages.
confTO_QUEUERETURN_DSN
 Timeout.queuereturn.dsn
 [undefined] As above, for delivery
 status notification messages.

confTO_QUEUEWARN Timeout.queuewarn
 [4h] The timeout before a warning
 message is sent to the sender telling
 them that the message has been
 deferred.
confTO_QUEUEWARN_NORMAL Timeout.queuewarn.normal
 [undefined] As above, for normal
 priority messages.
confTO_QUEUEWARN_URGENT Timeout.queuewarn.urgent
 [undefined] As above, for urgent
 priority messages.
confTO_QUEUEWARN_NONURGENT
 Timeout.queuewarn.non-urgent
 [undefined] As above, for non-urgent
 (low) priority messages.
confTO_QUEUEWARN_DSN
 Timeout.queuewarn.dsn
 [undefined] As above, for delivery
 status notification messages.
confTO_HOSTSTATUS Timeout.hoststatus
 [30m] How long information about host
 statuses will be maintained before it
 is considered stale and the host should
 be retried. This applies both within
 a single queue run and to persistent
 information (see below).
confTO_RESOLVER_RETRANS Timeout.resolver.retrans
 [varies] Sets the resolver's
 retransmission time interval (in
 seconds). Sets both
 Timeout.resolver.retrans.first and
 Timeout.resolver.retrans.normal.
confTO_RESOLVER_RETRANS_FIRST Timeout.resolver.retrans.first
 [varies] Sets the resolver's
 retransmission time interval (in
 seconds) for the first attempt to
 deliver a message.
confTO_RESOLVER_RETRANS_NORMAL Timeout.resolver.retrans.normal
 [varies] Sets the resolver's
 retransmission time interval (in
 seconds) for all resolver lookups
 except the first delivery attempt.
confTO_RESOLVER_RETRY Timeout.resolver.retry
 [varies] Sets the number of times
 to retransmit a resolver query.
 Sets both
 Timeout.resolver.retry.first and
 Timeout.resolver.retry.normal.
confTO_RESOLVER_RETRY_FIRST Timeout.resolver.retry.first
 [varies] Sets the number of times
 to retransmit a resolver query for
 the first attempt to deliver a
 message.
confTO_RESOLVER_RETRY_NORMAL Timeout.resolver.retry.normal
 [varies] Sets the number of times
 to retransmit a resolver query for
 all resolver lookups except the
 first delivery attempt.

confTIME_ZONE TimeZoneSpec [USE_SYSTEM] Time zone info -
- can be
 USE_SYSTEM to use the system's idea,
 USE_TZ to use the user's TZ envariable,
 or something else to force that value.
confDEF_USER_ID DefaultUser [1:1] Default user id.
confUSERDB_SPEC UserDatabaseSpec
 [undefined] User database
 specification.
confFALLBACK_MX FallbackMXhost [undefined] Fallback MX host.
confFALLBACK_SMARTHOST FallbackSmartHost
 [undefined] Fallback smart host.
confTRY_NULL_MX_LIST TryNullMXList [False] If this host is the
best MX
 for a host and other arrangements
 haven't been made, try connecting
 to the host directly; normally this
 would be a config error.
confQUEUE_LA QueueLA [varies] Load average at
which
 queue-only function kicks in.
 Default values is (8 * numproc)
 where numproc is the number of
 processors online (if that can be
 determined).
confREFUSE_LA RefuseLA [varies] Load average at which
 incoming SMTP connections are
 refused. Default values is (12 *
 numproc) where numproc is the
 number of processors online (if
 that can be determined).
confREJECT_LOG_INTERVAL RejectLogInterval [3h] Log interval when
 refusing connections for this long.
confDELAY_LA DelayLA [0] Load average at which
sendmail
 will sleep for one second on most
 SMTP commands and before accepting
 connections. 0 means no limit.
confMAX_ALIAS_RECURSION MaxAliasRecursion
 [10] Maximum depth of alias recursion.
confMAX_DAEMON_CHILDREN MaxDaemonChildren
 [undefined] The maximum number of
 children the daemon will permit. After
 this number, connections will be
 rejected. If not set or <= 0, there
is
 no limit.
confMAX_HEADERS_LENGTH MaxHeadersLength
 [32768] Maximum length of the sum
 of all headers.
confMAX_MIME_HEADER_LENGTH MaxMimeHeaderLength
 [undefined] Maximum length of
 certain MIME header field values.
confCONNECTION_RATE_THROTTLE ConnectionRateThrottle
 [undefined] The maximum number of
 connections permitted per second per
 daemon. After this many connections
 are accepted, further connections

 will be delayed. If not set or <= 0,
 there is no limit.
confCONNECTION_RATE_WINDOW_SIZE ConnectionRateWindowSize
 [60s] Define the length of the
 interval for which the number of
 incoming connections is maintained.
confWORK_RECIPIENT_FACTOR
 RecipientFactor [30000] Cost of each recipient.
confSEPARATE_PROC ForkEachJob [False] Run all deliveries in a
 separate process.
confWORK_CLASS_FACTOR ClassFactor [1800] Priority multiplier for
class.
confWORK_TIME_FACTOR RetryFactor [90000] Cost of each delivery
attempt.
confQUEUE_SORT_ORDER QueueSortOrder [Priority] Queue sort
algorithm:
 Priority, Host, Filename, Random,
 Modification, or Time.
confMIN_QUEUE_AGE MinQueueAge [0] The minimum amount of time a job
 must sit in the queue between queue
 runs. This allows you to set the
 queue run interval low for better
 responsiveness without trying all
 jobs in each run.
confDEF_CHAR_SET DefaultCharSet [unknown-8bit] When converting
 unlabeled 8 bit input to MIME, the
 character set to use by default.
confSERVICE_SWITCH_FILE ServiceSwitchFile
 [/etc/mail/service.switch] The file
 to use for the service switch on
 systems that do not have a
 system-defined switch.
confHOSTS_FILE HostsFile [/etc/hosts] The file to use when
doing
 "file" type access of hosts
names.
confDIAL_DELAY DialDelay [0s] If a connection fails, wait
this
 long and try again. Zero means
"don't
 retry". This is to allow "dial
on
 demand" connections to have enough
time
 to complete a connection.
confNO_RCPT_ACTION NoRecipientAction
 [none] What to do if there are no legal
 recipient fields (To:, Cc: or Bcc:)
 in the message. Legal values can
 be "none" to just leave the
 nonconforming message as is, "add-
to"

 to add a To: header with all the
 known recipients (which may expose
 blind recipients), "add-apparently-
to"
 to do the same but use Apparently-To:

 instead of To: (strongly discouraged
 in accordance with IETF standards),
 "add-bcc" to add an empty Bcc:
 header, or "add-to-undisclosed"
to
 add the header
 ``To: undisclosed-recipients:;''.
confSAFE_FILE_ENV SafeFileEnvironment
 [undefined] If set, sendmail will do a
 chroot() into this directory before
 writing files.
confCOLON_OK_IN_ADDR ColonOkInAddr [True unless Configuration
Level > 6]
 If set, colons are treated as a regular
 character in addresses. If not set,
 they are treated as the introducer to
 the RFC 822 "group" syntax.
Colons are
 handled properly in route-addrs. This
 option defaults on for V5 and lower
 configuration files.
confMAX_QUEUE_RUN_SIZE MaxQueueRunSize [0] If set, limit the maximum
size of
 any given queue run to this number of
 entries. Essentially, this will stop
 reading each queue directory after this
 number of entries are reached; it does
 not pick the highest priority jobs,
 so this should be as large as your
 system can tolerate. If not set, there
 is no limit.
confMAX_QUEUE_CHILDREN MaxQueueChildren
 [undefined] Limits the maximum number
 of concurrent queue runners active.
 This is to keep system resources used
 within a reasonable limit. Relates to
 Queue Groups and ForkEachJob.
confMAX_RUNNERS_PER_QUEUE MaxRunnersPerQueue
 [1] Only active when MaxQueueChildren
 defined. Controls the maximum number
 of queue runners (aka queue children)
 active at the same time in a work
 group. See also MaxQueueChildren.
confDONT_EXPAND_CNAMES DontExpandCnames
 [False] If set, $[... $] lookups that
 do DNS based lookups do not expand
 CNAME records. This currently violates
 the published standards, but the IETF
 seems to be moving toward legalizing
 this. For example, if
"FTP.Foo.ORG"

 is a CNAME for "Cruft.Foo.ORG",
then
 with this option set a lookup of
 "FTP" will return
"FTP.Foo.ORG"; if

 clear it returns
"Cruft.FOO.ORG". N.B.
 you may not see any effect until your
 downstream neighbors stop doing CNAME
 lookups as well.
confFROM_LINE UnixFromLine [From $g $d] The From_ line
used
 when sending to files or programs.
confSINGLE_LINE_FROM_HEADER SingleLineFromHeader
 [False] From: lines that have
 embedded newlines are unwrapped
 onto one line.
confALLOW_BOGUS_HELO AllowBogusHELO [False] Allow HELO SMTP
command that
 does not include a host name.
confMUST_QUOTE_CHARS MustQuoteChars [.'] Characters to be quoted
in a full
 name phrase (@,;:\()[] are automatic).
confOPERATORS OperatorChars [.:%@!^/[]+] Address operator
 characters.
confSMTP_LOGIN_MSG SmtpGreetingMessage
 [$j Sendmail $v/$Z; $b]
 The initial (spontaneous) SMTP
 greeting message. The word
"ESMTP"
 will be inserted between the first and
 second words to convince other
 sendmails to try to speak ESMTP.
confDONT_INIT_GROUPS DontInitGroups [False] If set, the
initgroups(3)
 routine will never be invoked. You
 might want to do this if you are
 running NIS and you have a large group
 map, since this call does a sequential
 scan of the map; in a large site this
 can cause your ypserv to run
 essentially full time. If you set
 this, agents run on behalf of users
 will only have their primary
 (/etc/passwd) group permissions.
confUNSAFE_GROUP_WRITES UnsafeGroupWrites
 [True] If set, group-writable
 :include: and .forward files are
 considered "unsafe", that is,
programs
 and files cannot be directly referenced
 from such files. World-writable files
 are always considered unsafe.
 Notice: this option is deprecated and
 will be removed in future versions;
 Set GroupWritableForwardFileSafe
 and GroupWritableIncludeFileSafe in
 DontBlameSendmail if required.
confCONNECT_ONLY_TO ConnectOnlyTo [undefined] override
connection
 address (for testing).
confCONTROL_SOCKET_NAME ControlSocketName
 [undefined] Control socket for daemon

 management.
confDOUBLE_BOUNCE_ADDRESS DoubleBounceAddress
 [postmaster] If an error occurs when
 sending an error message, send that
 "double bounce" error message
to this
 address. If it expands to an empty
 string, double bounces are dropped.
confDEAD_LETTER_DROP DeadLetterDrop [undefined] Filename to save
bounce
 messages which could not be returned
 to the user or sent to postmaster.
 If not set, the queue file will
 be renamed.
confRRT_IMPLIES_DSN RrtImpliesDsn [False] Return-Receipt-To:
header
 implies DSN request.
confRUN_AS_USER RunAsUser [undefined] If set, become this
user
 when reading and delivering mail.
 Causes all file reads (e.g., .forward
 and :include: files) to be done as
 this user. Also, all programs will
 be run as this user, and all output
 files will be written as this user.
confMAX_RCPTS_PER_MESSAGE MaxRecipientsPerMessage
 [infinite] If set, allow no more than
 the specified number of recipients in
 an SMTP envelope. Further recipients
 receive a 452 error code (i.e., they
 are deferred for the next delivery
 attempt).
confBAD_RCPT_THROTTLE BadRcptThrottle [infinite] If set and the
specified
 number of recipients in a single SMTP
 transaction have been rejected, sleep
 for one second after each subsequent
 RCPT command in that transaction.
confDONT_PROBE_INTERFACES DontProbeInterfaces
 [False] If set, sendmail will _not_
 insert the names and addresses of any
 local interfaces into class {w}
 (list of known "equivalent"
addresses).
 If you set this, you must also include
 some support for these addresses (e.g.,
 in a mailertable entry) -- otherwise,
 mail to addresses in this list will
 bounce with a configuration error.
 If set to "loopback" (without
 quotes), sendmail will skip
 loopback interfaces (e.g.,
"lo0").
confPID_FILE PidFile [system dependent] Location
of pid
 file.
confPROCESS_TITLE_PREFIX ProcessTitlePrefix
 [undefined] Prefix string for the

 process title shown on 'ps' listings.
confDONT_BLAME_SENDMAIL DontBlameSendmail
 [safe] Override sendmail's file
 safety checks. This will definitely
 compromise system security and should
 not be used unless absolutely
 necessary.
confREJECT_MSG - [550 Access denied] The message
 given if the access database contains
 REJECT in the value portion.
confRELAY_MSG - [550 Relaying denied] The message
 given if an unauthorized relaying
 attempt is rejected.
confDF_BUFFER_SIZE DataFileBufferSize
 [4096] The maximum size of a
 memory-buffered data (df) file
 before a disk-based file is used.
confXF_BUFFER_SIZE XScriptFileBufferSize
 [4096] The maximum size of a
 memory-buffered transcript (xf)
 file before a disk-based file is
 used.
confAUTH_MECHANISMS AuthMechanisms [GSSAPI KERBEROS_V4 DIGEST-
MD5
 CRAM-MD5] List of authentication
 mechanisms for AUTH (separated by
 spaces). The advertised list of
 authentication mechanisms will be the
 intersection of this list and the list
 of available mechanisms as determined
 by the Cyrus SASL library.
confAUTH_REALM AuthRealm [undefined] The authentication
realm
 that is passed to the Cyrus SASL
 library. If no realm is specified,
 $j is used.
confDEF_AUTH_INFO DefaultAuthInfo [undefined] Name of file that
contains
 authentication information for
 outgoing connections. This file must
 contain the user id, the authorization
 id, the password (plain text), the
 realm to use, and the list of
 mechanisms to try, each on a separate
 line and must be readable by root (or
 the trusted user) only. If no realm
 is specified, $j is used. If no
 mechanisms are given in the file,
 AuthMechanisms is used. Notice: this
 option is deprecated and will be
 removed in future versions; it doesn't
 work for the MSP since it can't read
 the file. Use the authinfo ruleset
 instead. See also the section SMTP
 AUTHENTICATION.
confAUTH_OPTIONS AuthOptions [undefined] If this option is 'A'
 then the AUTH= parameter for the
 MAIL FROM command is only issued

 when authentication succeeded.
 See doc/op/op.me for more options
 and details.
confAUTH_MAX_BITS AuthMaxBits [INT_MAX] Limit the maximum encryption
 strength for the security layer in
 SMTP AUTH (SASL). Default is
 essentially unlimited.
confTLS_SRV_OPTIONS TLSSrvOptions If this option is 'V' no
client
 verification is performed, i.e.,
 the server doesn't ask for a
 certificate.
confLDAP_DEFAULT_SPEC LDAPDefaultSpec [undefined] Default map
 specification for LDAP maps. The
 value should only contain LDAP
 specific settings such as "-h host
 -p port -d bindDN", etc. The
 settings will be used for all LDAP
 maps unless they are specified in
 the individual map specification
 ('K' command).
confCACERT_PATH CACertPath [undefined] Path to directory
 with certs of CAs.
confCACERT CACertFile [undefined] File containing one CA
 cert.
confSERVER_CERT ServerCertFile [undefined] File containing
the
 cert of the server, i.e., this cert
 is used when sendmail acts as
 server.
confSERVER_KEY ServerKeyFile [undefined] File containing
the
 private key belonging to the server
 cert.
confCLIENT_CERT ClientCertFile [undefined] File containing
the
 cert of the client, i.e., this cert
 is used when sendmail acts as
 client.
confCLIENT_KEY ClientKeyFile [undefined] File containing
the
 private key belonging to the client
 cert.
confCRL CRLFile [undefined] File containing
certificate
 revocation status, useful for X.509v3
 authentication. Note that CRL requires
 at least OpenSSL version 0.9.7.
confDH_PARAMETERS DHParameters [undefined] File containing the
 DH parameters.
confRAND_FILE RandFile [undefined] File containing random
 data (use prefix file:) or the
 name of the UNIX socket if EGD is
 used (use prefix egd:). STARTTLS
 requires this option if the compile
 flag HASURANDOM is not set (see
 sendmail/README).

confNICE_QUEUE_RUN NiceQueueRun [undefined] If set, the
priority of
 queue runners is set the given value
 (nice(3)).
confDIRECT_SUBMISSION_MODIFIERS DirectSubmissionModifiers
 [undefined] Defines {daemon_flags}
 for direct submissions.
confUSE_MSP UseMSP [undefined] Use as mail submission
 program, see sendmail/SECURITY.
confDELIVER_BY_MIN DeliverByMin [0] Minimum time for Deliver
By
 SMTP Service Extension (RFC 2852).
confREQUIRES_DIR_FSYNC RequiresDirfsync [true] RequiresDirfsync can
 be used to turn off the compile time
 flag REQUIRES_DIR_FSYNC at runtime.
 See sendmail/README for details.
confSHARED_MEMORY_KEY SharedMemoryKey [0] Key for shared memory.
confFAST_SPLIT FastSplit [1] If set to a value greater than
 zero, the initial MX lookups on
 addresses is suppressed when they
 are sorted which may result in
 faster envelope splitting. If the
 mail is submitted directly from the
 command line, then the value also
 limits the number of processes to
 deliver the envelopes.
confMAILBOX_DATABASE MailboxDatabase [pw] Type of lookup to find
 information about local mailboxes.
confDEQUOTE_OPTS - [empty] Additional options for the
 dequote map.
confINPUT_MAIL_FILTERS InputMailFilters
 A comma separated list of filters
 which determines which filters and
 the invocation sequence are
 contacted for incoming SMTP
 messages. If none are set, no
 filters will be contacted.
confMILTER_LOG_LEVEL Milter.LogLevel [9] Log level for input mail
filter
 actions, defaults to LogLevel.
confMILTER_MACROS_CONNECT Milter.macros.connect
 [j, _, {daemon_name}, {if_name},
 {if_addr}] Macros to transmit to
 milters when a session connection
 starts.
confMILTER_MACROS_HELO Milter.macros.helo
 [{tls_version}, {cipher},
 {cipher_bits}, {cert_subject},
 {cert_issuer}] Macros to transmit to
 milters after HELO/EHLO command.
confMILTER_MACROS_ENVFROM Milter.macros.envfrom
 [i, {auth_type}, {auth_authen},
 {auth_ssf}, {auth_author},
 {mail_mailer}, {mail_host},
 {mail_addr}] Macros to transmit to
 milters after MAIL FROM command.
confMILTER_MACROS_ENVRCPT Milter.macros.envrcpt
 [{rcpt_mailer}, {rcpt_host},

 {rcpt_addr}] Macros to transmit to
 milters after RCPT TO command.
confMILTER_MACROS_EOM Milter.macros.eom
 [{msg_id}] Macros to transmit to
 milters after DATA command.

See also the description of OSTYPE for some parameters that can be
tweaked (generally pathnames to mailers).

ClientPortOptions and DaemonPortOptions are special cases since
multiple
clients/daemons can be defined. This can be done via

 CLIENT_OPTIONS(`field1=value1,field2=value2,...')
 DAEMON_OPTIONS(`field1=value1,field2=value2,...')

Note that multiple CLIENT_OPTIONS() commands (and therefore multiple
ClientPortOptions settings) are allowed in order to give settings for
each
protocol family (e.g., one for Family=inet and one for Family=inet6).
A
restriction placed on one family only affects outgoing connections on
that
particular family.

If DAEMON_OPTIONS is not used, then the default is

 DAEMON_OPTIONS(`Port=smtp, Name=MTA')
 DAEMON_OPTIONS(`Port=587, Name=MSA, M=E')

If you use one DAEMON_OPTIONS macro, it will alter the parameters
of the first of these. The second will still be defaulted; it
represents a "Message Submission Agent" (MSA) as defined by
RFC
2476 (see below). To turn off the default definition for the MSA,
use FEATURE(`no_default_msa') (see also FEATURES). If you use
additional DAEMON_OPTIONS macros, they will add additional daemons.

Example 1: To change the port for the SMTP listener, while
still using the MSA default, use
 DAEMON_OPTIONS(`Port=925, Name=MTA')

Example 2: To change the port for the MSA daemon, while still
using the default SMTP port, use
 FEATURE(`no_default_msa')
 DAEMON_OPTIONS(`Name=MTA')
 DAEMON_OPTIONS(`Port=987, Name=MSA, M=E')

Note that if the first of those DAEMON_OPTIONS lines were omitted, then
there would be no listener on the standard SMTP port.

Example 3: To listen on both IPv4 and IPv6 interfaces, use

 DAEMON_OPTIONS(`Name=MTA-v4, Family=inet')
 DAEMON_OPTIONS(`Name=MTA-v6, Family=inet6')

A "Message Submission Agent" still uses all of the same
rulesets for
processing the message (and therefore still allows message rejection
via
the check_* rulesets). In accordance with the RFC, the MSA will ensure
that all domains in envelope addresses are fully qualified if the
message
is relayed to another MTA. It will also enforce the normal address
syntax
rules and log error messages. Additionally, by using the M=a modifier
you
can require authentication before messages are accepted by the MSA.
Notice: Do NOT use the 'a' modifier on a public accessible MTA!
Finally,
the M=E modifier shown above disables ETRN as required by RFC 2476.

Mail filters can be defined using the INPUT_MAIL_FILTER() and
MAIL_FILTER()
commands:

 INPUT_MAIL_FILTER(`sample', `S=local:/var/run/f1.sock')
 MAIL_FILTER(`myfilter', `S=inet:3333@localhost')

The INPUT_MAIL_FILTER() command causes the filter(s) to be called in
the
same order they were specified by also setting confINPUT_MAIL_FILTERS.
A
filter can be defined without adding it to the input filter list by
using
MAIL_FILTER() instead of INPUT_MAIL_FILTER() in your .mc file.
Alternatively, you can reset the list of filters and their order by
setting
confINPUT_MAIL_FILTERS option after all INPUT_MAIL_FILTER() commands in
your .mc file.

+----------------------------+
| MESSAGE SUBMISSION PROGRAM |
+----------------------------+

The purpose of the message submission program (MSP) is explained
in sendmail/SECURITY. This section contains a list of caveats and
a few hints how for those who want to tweak the default configuration
for it (which is installed as submit.cf).

Notice: do not add options/features to submit.mc unless you are
absolutely sure you need them. Options you may want to change
include:

- confTRUSTED_USERS, FEATURE(`use_ct_file'), and confCT_FILE for
 avoiding X-Authentication warnings.
- confTIME_ZONE to change it from the default `USE_TZ'.
- confDELIVERY_MODE is set to interactive in msp.m4 instead
 of the default background mode.
- FEATURE(stickyhost) and LOCAL_RELAY to send unqualified addresses
 to the LOCAL_RELAY instead of the default relay.
- confRAND_FILE if you use STARTTLS and sendmail is not compiled with
 the flag HASURANDOM.

The MSP performs hostname canonicalization by default. As also
explained in sendmail/SECURITY, mail may end up for various DNS
related reasons in the MSP queue. This problem can be minimized by
using

 FEATURE(`nocanonify', `canonify_hosts')
 define(`confDIRECT_SUBMISSION_MODIFIERS', `C')

See the discussion about nocanonify for possible side effects.

Some things are not intended to work with the MSP. These include
features that influence the delivery process (e.g., mailertable,
aliases), or those that are only important for a SMTP server (e.g.,
virtusertable, DaemonPortOptions, multiple queues). Moreover,
relaxing certain restrictions (RestrictQueueRun, permissions on
queue directory) or adding features (e.g., enabling prog/file mailer)
can cause security problems.

Other things don't work well with the MSP and require tweaking or
workarounds. For example, to allow for client authentication it
is not just sufficient to provide a client certificate and the
corresponding key, but it is also necessary to make the key group
(smmsp) readable and tell sendmail not to complain about that, i.e.,

 define(`confDONT_BLAME_SENDMAIL', `GroupReadableKeyFile')

If the MSP should actually use AUTH then the necessary data
should be placed in a map as explained in SMTP AUTHENTICATION:

FEATURE(`authinfo', `DATABASE_MAP_TYPE /etc/mail/msp-authinfo')

/etc/mail/msp-authinfo should contain an entry like:

 AuthInfo:127.0.0.1 "U:smmsp" "P:secret"
"M:DIGEST-MD5"

The file and the map created by makemap should be owned by smmsp,
its group should be smmsp, and it should have mode 640. The database
used by the MTA for AUTH must have a corresponding entry.
Additionally the MTA must trust this authentication data so the AUTH=
part will be relayed on to the next hop. This can be achieved by
adding the following to your sendmail.mc file:

 LOCAL_RULESETS
 SLocal_trust_auth
 R$* $: $&{auth_authen}
 Rsmmsp $# OK

Note: the authentication data can leak to local users who invoke
the MSP with debug options or even with -v. For that reason either
an authentication mechanism that does not show the password in the
AUTH dialogue (e.g., DIGEST-MD5) or a different authentication
method like STARTTLS should be used.

feature/msp.m4 defines almost all settings for the MSP. Most of
those should not be changed at all. Some of the features and options
can be overridden if really necessary. It is a bit tricky to do

this, because it depends on the actual way the option is defined
in feature/msp.m4. If it is directly defined (i.e., define()) then
the modified value must be defined after

 FEATURE(`msp')

If it is conditionally defined (i.e., ifdef()) then the desired
value must be defined before the FEATURE line in the .mc file.
To see how the options are defined read feature/msp.m4.

+--------------------------+
| FORMAT OF FILES AND MAPS |
+--------------------------+

Files that define classes, i.e., F{classname}, consist of lines
each of which contains a single element of the class. For example,
/etc/mail/local-host-names may have the following content:

my.domain
another.domain

Maps must be created using makemap(8) , e.g.,

 makemap hash MAP < MAP

In general, a text file from which a map is created contains lines
of the form

key value

where 'key' and 'value' are also called LHS and RHS, respectively.
By default, the delimiter between LHS and RHS is a non-empty sequence
of white space characters.

+------------------+
| DIRECTORY LAYOUT |
+------------------+

Within this directory are several subdirectories, to wit:

m4 General support routines. These are typically
 very important and should not be changed without
 very careful consideration.

cf The configuration files themselves. They have
 ".mc" suffixes, and must be run through m4 to
 become complete. The resulting output should
 have a ".cf" suffix.

ostype Definitions describing a particular operating
 system type. These should always be referenced
 using the OSTYPE macro in the .mc file. Examples
 include "bsd4.3", "bsd4.4",
"sunos3.5", and
 "sunos4.1".

domain Definitions describing a particular domain,
referenced
 using the DOMAIN macro in the .mc file. These are
 site dependent; for example, "CS.Berkeley.EDU.m4"

 describes hosts in the CS.Berkeley.EDU subdomain.

mailer Descriptions of mailers. These are referenced using
 the MAILER macro in the .mc file.

sh Shell files used when building the .cf file from the
 .mc file in the cf subdirectory.

feature These hold special orthogonal features that you might
 want to include. They should be referenced using
 the FEATURE macro.

hack Local hacks. These can be referenced using the HACK
 macro. They shouldn't be of more than voyeuristic
 interest outside the .Berkeley.EDU domain, but who knows?

siteconfig Site configuration -- e.g., tables of locally connected
 UUCP sites.

+------------------------+
| ADMINISTRATIVE DETAILS |
+------------------------+

The following sections detail usage of certain internal parts of the
sendmail.cf file. Read them carefully if you are trying to modify
the current model. If you find the above descriptions adequate, these
should be {boring, confusing, tedious, ridiculous} (pick one or more).

RULESETS (* means built in to sendmail)

 0 * Parsing
 1 * Sender rewriting
 2 * Recipient rewriting
 3 * Canonicalization
 4 * Post cleanup
 5 * Local address rewrite (after aliasing)
 1x mailer rules (sender qualification)
 2x mailer rules (recipient qualification)
 3x mailer rules (sender header qualification)
 4x mailer rules (recipient header qualification)
 5x mailer subroutines (general)
 6x mailer subroutines (general)
 7x mailer subroutines (general)
 8x reserved
 90 Mailertable host stripping
 96 Bottom half of Ruleset 3 (ruleset 6 in old sendmail)
 97 Hook for recursive ruleset 0 call (ruleset 7 in old sendmail)
 98 Local part of ruleset 0 (ruleset 8 in old sendmail)

MAILERS

 0 local, prog local and program mailers
 1 [e]smtp, relay SMTP channel
 2 uucp-* UNIX-to-UNIX Copy Program
 3 netnews Network News delivery
 4 fax Sam Leffler's HylaFAX software
 5 mail11 DECnet mailer

MACROS

 A
 B Bitnet Relay
 C DECnet Relay
 D The local domain -- usually not needed
 E reserved for X.400 Relay
 F FAX Relay
 G
 H mail Hub (for mail clusters)
 I
 J
 K
 L Luser Relay
 M Masquerade (who you claim to be)
 N
 O
 P
 Q
 R Relay (for unqualified names)
 S Smart Host
 T
 U my UUCP name (if you have a UUCP connection)
 V UUCP Relay (class {V} hosts)
 W UUCP Relay (class {W} hosts)
 X UUCP Relay (class {X} hosts)
 Y UUCP Relay (all other hosts)
 Z Version number

CLASSES

 A
 B domains that are candidates for bestmx lookup
 C
 D
 E addresses that should not seem to come from $M
 F hosts this system forward for
 G domains that should be looked up in genericstable
 H
 I
 J
 K
 L addresses that should not be forwarded to $R
 M domains that should be mapped to $M
 N host/domains that should not be mapped to $M
 O operators that indicate network operations (cannot be in local
names)
 P top level pseudo-domains: BITNET, DECNET, FAX, UUCP, etc.
 Q

 R domains this system is willing to relay (pass anti-spam filters)
 S
 T
 U locally connected UUCP hosts
 V UUCP hosts connected to relay $V
 W UUCP hosts connected to relay $W
 X UUCP hosts connected to relay $X
 Y locally connected smart UUCP hosts
 Z locally connected domain-ized UUCP hosts
 . the class containing only a dot
 [the class containing only a left bracket

M4 DIVERSIONS

 1 Local host detection and resolution
 2 Local Ruleset 3 additions
 3 Local Ruleset 0 additions
 4 UUCP Ruleset 0 additions
 5 locally interpreted names (overrides $R)
 6 local configuration (at top of file)
 7 mailer definitions
 8 DNS based blacklists
 9 special local rulesets (1 and 2)

$Revision: 1.1.1.1 $, Last updated $Date: 2006/10/11 20:45:19 $

