proofpoint.

Hiding in Plain Sight - Obfuscation Techniques

in Phishing Attacks
Threat Insight

Increasingly, cybercriminals are turning to commodity software, sold on the black market or even open sourced. These
kits allow attackers with relatively basic skills to launch malicious campaigns at scale. Exploit kits, for example, can

be installed on compromised websites to exploit a wide range of vulnerabilities in a user’s web browser. Phishing kits
provide most of the necessary components to run phishing schemes from development environments to graphics and
code to create passable copies of legitimate websites. In some cases, the kits may even come with email lists, along
with, of course, spamming software for delivering the emails.

These phishing kits are increasingly sophisticated and often include methods to avoid detection by client software, email
providers, and gateways. Many of these obfuscation techniques aren’t particularly new, but the following six examples
demonstrate popular (and, too often, effective) methods for hiding their code and malicious intent.

This post analyzes the following obfuscation techniques observed by Proofpoint researchers in multiple phishing
campaigns:

e AES 256 with JavaScript in the browser
» Base64 refresh

* Flipped Base64 JavaScript encoding

* Combination Encoding

* Custom Encoding

» Xor Encoding in JavaScript

* Multibyte XOR Phishing Landing Obfuscation

AES 256 with JavaScript in the browser

In multiple campaigns, Proofpoint researchers have observed phishing pages that use legitimate AES encryption in
JavaScript to encode their pages. In this case, the browser performs all of the decoding so that no normal HTML content
for the landing can be observed on the wire.

In the example below, the code of the phishing web page attempts to fool the user into giving up their information. The
page loads a JavaScript resource called ‘hee.js,” which contains the AES decryption code. The variable hea2t contains
the encrypted phishing landing page HTML code (Fig. 1).




Threat Insight | Obfuscation Techniques in Phishing Attacks 2

Figure 1: Encrypted JavaScript

Below is the bottom of the same page. The document.write method is called on the output variable (Fig. 2), which will
decrypt the content of the hea2t variable, effectively rendering the web page.

Figure 2: Document.write method calling the AES decryption routine on the hea2t variable

hee.js is a publicly available, open source implementation of AES (Fig. 3).



Threat Insight | Obfuscation Techniques in Phishing Attacks 3

Figure 3: AES decryption routine within hee.js

The result is the decoded page shown below (Fig. 4).




Threat Insight | Obfuscation Techniques in Phishing Attacks 4

Figure 4: Decrypted HTML landing that is output of hee.js

Base64 refresh

This technique makes use of data URIs to obfuscate the phishing landing page by instructing the browser to load the
base64 code as the page content. The browser will render the base64 code as html if it is a supported feature. If done
correctly, the initial HTML content of the phishing page will not be observed on the wire. Proofpoint researchers have also
observed this technique in multiple campaigns.




Threat Insight | Obfuscation Techniques in Phishing Attacks 5

Figure 5: Data URI encoded HTML variable in phishing landing page

In this case, the code simply instructs the browser to render the base64 code as text/HTML data (Fig. 6).

Figure 6: Rendering base64 code as text/HTML

Once decoded, it is evident that the base64 encoded content is simple HTML.



Threat Insight | Obfuscation Techniques in Phishing Attacks 6

Figure 7: Output of base64-encoded JavaScript variable

An end-user could watch for the unusual URL structure, as seen in the URL bar below, even if the rendered page looks
legitimate (Fig. 8):

Figure 8: Unusual URL is a tipoff to a potential phishing page

In one interesting variant, we spotted JavaScript was embedded inside another data URI.



Threat Insight | Obfuscation Techniques in Phishing Attacks 7

Figure 9: JavaScript embedded in a data URI

This nesting of data URIs will show a somewhat legitimate looking Google URL in the browser bar while the page
contains actual phishing code.

Figure 10: Nested data URIs rendering a legitimate-looking Google signin page

The decoded base64 inside the data URI shows that an iframe is being loaded which contains the content of the
phishing page.



Threat Insight | Obfuscation Techniques in Phishing Attacks 8

Figure 11: Phishing content in an iframe

Flipped Base64 JavaScript encoding

Multiple campaigns were observed making use of JavaScript and ‘backwards’ base64 to hide the phishing code. The
document starts off defining a variable ‘OIO’ (Fig. 12):

Figure 12: Defining a variable with a backwards base64 string for later reversal and decoding

Functions are defined at the end of the page. Function ‘OlI’ handles the base64 decoding, while function ‘001’ takes care
of reversing the string. The evaluation statement will reverse the contents of the 010 variable and then base64 decode it.




Threat Insight | Obfuscation Techniques in Phishing Attacks 9

Figure 13: Function for decoding and reversing a string which will render a phishing page

Often, the resulting decoded base64 is further encoded, as can be seen in the next example “Combination encoding”.




Threat Insight | Obfuscation Techniques in Phishing Attacks 10

Figure 14: Phishing landing page with stolen branding
This process is invisible to the end user who will be presented with a legitimate looking phishing page.
Combination encoding

This particular encoding method takes the previous encodings and puts them all together, while adding a few tricks. It
starts with the data URI method (Fig. 15)

Figure 15: Variable defined with a data uri base64-encoded string

Upon base64 decoding this we are presented with some a hex-encoded string (Fig. 16).



Threat Insight | Obfuscation Techniques in Phishing Attacks 11

Figure 16: Decoded base64 presents hex encoding

Upon escaping the hex characters we are presented with the flipped base64 encoding method.




Threat Insight | Obfuscation Techniques in Phishing Attacks 12

Figure 17: The now-familiar flipped base64 encoding

Upon flipping and base64 decoding, we are presented with a nested dean edwards JavaScript packer. This packer is

very popular and easily decoded. Websites like http://jsbeautifier.org/ or tools like JSDetox (http://www.relentless-coding.
org/projects/jsdetox) have no problem decoding it.

The initial packed code is shown below (Fig. 18):




Threat Insight | Obfuscation Techniques in Phishing Attacks 13

Figure 18: The initial packed code utilizing a dean edwards JavaScript packer

After the first round of unpacking:




Threat Insight | Obfuscation Techniques in Phishing Attacks 14

Figure 19: The code after initial unpacking

After the second round of unpacking, the code is starting to emerge:



Threat Insight | Obfuscation Techniques in Phishing Attacks 15

Figure 20: Two rounds of unpacking

The last step to make it readable is to decode the URL encoding. Finally, we have the normalized phishing landing page.




Threat Insight | Obfuscation Techniques in Phishing Attacks 16

Figure 21: Normalized phishing landing page after decoding and unpacking

Custom Encoding observed in Apple Account Phish

Another phishing landing obfuscation technique to discuss here is a custom character replacement that Proofpoint
researchers observed associated with an Apple Account phishing scheme. Initially we are presented with a page that
consists of two eval statements and two arrays at the end of the second eval statement. Looking closely at the array, it
appears that it could be useful in decoding.




Threat Insight | Obfuscation Techniques in Phishing Attacks 17

Figure 22: The encoded phishing landing

Figure 23: The character key that exists at the end of the phishing landing

Figure 24: The unescaped content of the first unescape section in the encoded phishing landing



Threat Insight | Obfuscation Techniques in Phishing Attacks 18

If we decode the first eval statement we observe that the JavaScript “unescape” variable is rewritten, so that when the
second section evals the code, it runs the “new unescape” rather than the normal JavaScript unescape command.

The first variable in the function is the code to deobfuscate, the second is the encoded characters, and the third is the
key. If the variables were rewritten to make more sense, the code would look something like this.

Figure 25: Reformatted and rewritten code

This is simply a character replace using a cipher that looks something like this:

Figure 26: Cipher for text replace obfuscation



Threat Insight | Obfuscation Techniques in Phishing Attacks 19

When we replace these characters on the page, we are presented with a mostly-decoded page:

Figure 27: Decoded page after character replace
However, this page still contains some decimal and \uO0 encoded strings on it.

The Unicode-encoded strings appear below (Fig. 28):



Threat Insight | Obfuscation Techniques in Phishing Attacks 20

Figure 28: Unicode-encoded strings in Apple Account phishing scheme

The decimal-encoded strings follow (Fig. 29):

Figure 29: Decimal-encoded strings in Apple Account phishing scheme




Threat Insight | Obfuscation Techniques in Phishing Attacks 21
Simple Xor Encoding in JavaScript

This phishing landing we examined xor decodes charcode stored in a variable and then writes out the page via
document.write. The obfuscated landing page begins as follows by defining an encoded string:

Figure 30: First section of the obfuscated landing page with an excerpt of the encoded string

The JavaScript which will xor the string with 2 appears below (Fig. 31):

Figure 31: JavaScript code that will xor decode

The resulting code after the xor still needs a another round of decoding:



Threat Insight | Obfuscation Techniques in Phishing Attacks 22

Figure 32: Phishing page excerpt after xor decoding

After URL decoding, the normalized Dropbox phishing site looks like this (Fig. 33):




Threat Insight | Obfuscation Techniques in Phishing Attacks 23

Figure 33: Fully decoded Dropbox phishing site



Threat Insight | Obfuscation Techniques in Phishing Attacks 24

Multibyte XOR Phishing Landing Obfuscation

This method is among the more sophisticated phishing obfuscations we’ve observed. In this case, the initial landing is
essentially two chunks of data that are unescaped and eval’'d.

Figure 34: Encoded initial landing page



Threat Insight | Obfuscation Techniques in Phishing Attacks 25

Decoding the first eval statement (hex decode) yields the brains of the decoding (Fig. 35):

Figure 35: First eval statement after hex-decoding

While it doesn’t involve much code, this is a fairly sophisticated obfuscation method as far as phishing goes. The second
block of code decodes to eval the large chunk of data as the s variable in the above code.

The tmp variable becomes an array by splitting the data into two bits of information where “17864328” occurs in the
variable. tmp[0] holds the encoded data, while tmp[1] holds what will be used as a key for decoding.

Figure 36: “17864328” breaks the two elements of the array

The hex value of tmp[1] is appended by “817390” making the key for this instance a value of “4515988817390".
The for loop starts off initiating a counter and will iterate over the length of the data, the first value being 47.
String.fromCharCode((parselnt(k.charAt(i%k.length)) ~ s.charCodeAt(i)) +-7);

s.charCodeAt(i) evaluates to the first byte in the s variable. In the first iteration, it will be 47 in hex which evaluates to 71 in
decimal.

String.fromCharCode((parselnt(k.charAt(i%k.length)) ~ s.charCodeAt(i)) +-7);
Evaluating further, i%k.length for the first loop will be 0.
String.fromCharCode((parselnt(k.charAt(i%k.length)) ~ s.charCodeAt(i)) +-7);
Next, k.charAt(0) will evaluate to the first character in the key variable which is 4.
String.fromCharCode((parselnt(k.charAt(i%k.length)) ~ s.charCodeAt(i)) +-7);

This evaluates to essentially 4~ 71 which evaluates to 67.



Threat Insight | Obfuscation Techniques in Phishing Attacks 26

String.fromCharCode((parselnt(k.charAt(i%k.length)) ~ s.charCodeAt(i)) +-7);

The next step just subtracts 7 from 67 and parses as an integer, so the result is 60.
String.fromCharCode((parselnt(k.charAt(i%k.length)) ~ s.charCodeAt(i)) +-7);

Finally, the expression converts 60 decimal to ascii, so we end up with “<”, which is saved in the r variable.
Subsequent loop values would look something like this:

String.fromCharCode((5 "~ 45)+-7) ==

String.fromCharCode((1 ™~ 106)+-7) ==

String.fromCharCode((5 ™ 115)+-7) == 0

The fully decoded value is then written to the page via document.write where we see normal html.

Figure 37: The deobfuscated page



Threat Insight | Obfuscation Techniques in Phishing Attacks 27

Conclusion

As phishing schemes become more sophisticated, the landing pages to which users are directed via email or social
media lures are increasingly obfuscated to avoid detection by endpoints and gateway appliances. With few exceptions,
these landing pages are legitimate-looking copies of the sites indicated in the lures, e.g., Dropbox, DHL, or Apple. More
importantly, though, while many of the obfuscation techniques we have examined here are extremely sophisticated, they
are often being incorporated in phishing kits, meaning that even inexperienced cybercriminals can now stage attacks
and build landing pages with commaodity tools.

For businesses, individuals, and vendors, the challenge is to implement detection techniques that can decode the
obfuscation as well as to increase awareness of the warning signs for phishing campaigns.

about proofpoint

Proofpoint Inc. (NASDAQ:PFPT) is a leading security-as-a-service provider that focuses on cloud-based solutions for threat protection, compliance,
archiving & governance, and secure communications. Organizations around the world depend on Proofpoint’s expertise, patented technologies and
on-demand delivery system to protect against phishing, malware and spam, safeguard privacy, encrypt sensitive information, and archive and govern
messages and critical enterprise information.

H 892 Ross Drive 1.408.517.4710
prOOfPOI nt Sunnyvale, CA 94089 www.proofpoint.com

©Proofpoint, Inc. Proofpoint is a trademark of Proofpoint, Inc. in the United States and other countries. All other trademarks contained herein are property of their
respective owners.



